Deep learning:十五(Self-Taught Learning练习)

 

  前言:

  本次实验主要是练习soft- taught learning的实现。参考的资料为网页:http://deeplearning.stanford.edu/wiki/index.php/Exercise:Self-Taught_Learning。Soft-taught leaning是用的无监督学习来学习到特征提取的参数,然后用有监督学习来训练分类器。这里分别是用的sparse autoencoder和softmax regression。实验的数据依旧是手写数字数据库MNIST Dataset.

 

  实验基础:

  从前面的知识可以知道,sparse autoencoder的输出应该是和输入数据尺寸大小一样的,且很相近,那么我们训练出的sparse autoencoder模型该怎样提取出特征向量呢?其实输入样本经过sparse code提取出特征的表达式就是隐含层的输出了,首先来看看前面的经典sparse code模型,如下图所示:

   Deep learning:十五(Self-Taught Learning练习)

  拿掉那个后面的输出层后,隐含层的值就是我们所需要的特征值了,如下图所示:

   Deep learning:十五(Self-Taught Learning练习)

  从教程中可知,在unsupervised learning中有两个观点需要特别注意,一个是self-taught learning,一个是semi-supervised learning。Self-taught learning是完全无监督的。教程中有举了个例子,很好的说明了这个问题,比如说我们需要设计一个系统来分类出轿车和摩托车。如果我们给出的训练样本图片是自然界中随便下载的(也就是说这些图片中可能有轿车和摩托车,有可能都没有,且大多数情况下是没有的),然后使用的是这些样本来特征模型的话,那么此时的方法就叫做self-taught learning。如果我们训练的样本图片都是轿车和摩托车的图片,只是我们不知道哪张图对应哪种车,也就是说没有标注,此时的方法不能叫做是严格的unsupervised feature,只能叫做是semi-supervised learning。

  一些matlab函数:

  numel:

  比如说n = numel(A)表示返回矩阵A中元素的个数。

  unique:

  unique为找出向量中的非重复元素并进行排序后输出。

  

  实验结果:

  采用数字5~9的样本来进行无监督训练,采用的方法是sparse autoencoder,可以提取出这些数据的权值,权值转换成图片显示如下:

   Deep learning:十五(Self-Taught Learning练习)

  但是本次实验主要是进行0~4这5个数字的分类,虽然进行无监督训练用的是数字5~9的训练样本,这依然不会影响后面的结果。只是后面的分类器设计是用的softmax regression,所以是有监督的。最后据官网网页上的结果精度是98%,而直接用原始的像素点进行分类器的设计不仅效果要差(才96%),而且训练的速度也会变慢不少。

 

  实验主要部分代码:

  stlExercise.m:

%% CS294A/CS294W Self-taught Learning Exercise



%  Instructions

%  ------------

% 

%  This file contains code that helps you get started on the

%  self-taught learning. You will need to complete code in feedForwardAutoencoder.m

%  You will also need to have implemented sparseAutoencoderCost.m and 

%  softmaxCost.m from previous exercises.

%

%% ======================================================================

%  STEP 0: Here we provide the relevant parameters values that will

%  allow your sparse autoencoder to get good filters; you do not need to 

%  change the parameters below.



inputSize  = 28 * 28;

numLabels  = 5;

hiddenSize = 200;

sparsityParam = 0.1; % desired average activation of the hidden units.

                     % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",

                     %  in the lecture notes). 

lambda = 3e-3;       % weight decay parameter       

beta = 3;            % weight of sparsity penalty term   

maxIter = 400;



%% ======================================================================

%  STEP 1: Load data from the MNIST database

%

%  This loads our training and test data from the MNIST database files.

%  We have sorted the data for you in this so that you will not have to

%  change it.



% Load MNIST database files

mnistData   = loadMNISTImages('train-images.idx3-ubyte');

mnistLabels = loadMNISTLabels('train-labels.idx1-ubyte');



% Set Unlabeled Set (All Images)



% Simulate a Labeled and Unlabeled set

labeledSet   = find(mnistLabels >= 0 & mnistLabels <= 4);

unlabeledSet = find(mnistLabels >= 5);



%%增加的一行代码

unlabeledSet = unlabeledSet(1:end/3);



numTest = round(numel(labeledSet)/2);%拿一半的样本来训练%

numTrain = round(numel(labeledSet)/3);

trainSet = labeledSet(1:numTrain);

testSet  = labeledSet(numTrain+1:2*numTrain);



unlabeledData = mnistData(:, unlabeledSet);%%为什么这两句连在一起都要出错呢?

% pack;

trainData   = mnistData(:, trainSet);

trainLabels = mnistLabels(trainSet)' + 1; % Shift Labels to the Range 1-5



% mnistData2 = mnistData;

testData   = mnistData(:, testSet);

testLabels = mnistLabels(testSet)' + 1;   % Shift Labels to the Range 1-5



% Output Some Statistics

fprintf('# examples in unlabeled set: %d\n', size(unlabeledData, 2));

fprintf('# examples in supervised training set: %d\n\n', size(trainData, 2));

fprintf('# examples in supervised testing set: %d\n\n', size(testData, 2));



%% ======================================================================

%  STEP 2: Train the sparse autoencoder

%  This trains the sparse autoencoder on the unlabeled training

%  images. 



%  Randomly initialize the parameters

theta = initializeParameters(hiddenSize, inputSize);



%% ----------------- YOUR CODE HERE ----------------------

%  Find opttheta by running the sparse autoencoder on

%  unlabeledTrainingImages



opttheta = theta; 

addpath minFunc/

options.Method = 'lbfgs';

options.maxIter = 400;

options.display = 'on';

[opttheta, loss] = minFunc( @(p) sparseAutoencoderLoss(p, ...

      inputSize, hiddenSize, ...

      lambda, sparsityParam, ...

      beta, unlabeledData), ...

      theta, options);





%% -----------------------------------------------------

                          

% Visualize weights

W1 = reshape(opttheta(1:hiddenSize * inputSize), hiddenSize, inputSize);

display_network(W1');



%%======================================================================

%% STEP 3: Extract Features from the Supervised Dataset

%  

%  You need to complete the code in feedForwardAutoencoder.m so that the 

%  following command will extract features from the data.



trainFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ...

                                       trainData);



testFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ...

                                       testData);



%%======================================================================

%% STEP 4: Train the softmax classifier



softmaxModel = struct;  

%% ----------------- YOUR CODE HERE ----------------------

%  Use softmaxTrain.m from the previous exercise to train a multi-class

%  classifier. 



%  Use lambda = 1e-4 for the weight regularization for softmax

lambda = 1e-4;

inputSize = hiddenSize;

numClasses = numel(unique(trainLabels));%unique为找出向量中的非重复元素并进行排序



% You need to compute softmaxModel using softmaxTrain on trainFeatures and

% trainLabels





% You need to compute softmaxModel using softmaxTrain on trainFeatures and

% trainLabels



options.maxIter = 100;

softmaxModel = softmaxTrain(inputSize, numClasses, lambda, ...

                            trainFeatures, trainLabels, options);







%% -----------------------------------------------------





%%======================================================================

%% STEP 5: Testing 



%% ----------------- YOUR CODE HERE ----------------------

% Compute Predictions on the test set (testFeatures) using softmaxPredict

% and softmaxModel





[pred] = softmaxPredict(softmaxModel, testFeatures);





%% -----------------------------------------------------



% Classification Score

fprintf('Test Accuracy: %f%%\n', 100*mean(pred(:) == testLabels(:)));



% (note that we shift the labels by 1, so that digit 0 now corresponds to

%  label 1)

%

% Accuracy is the proportion of correctly classified images

% The results for our implementation was:

%

% Accuracy: 98.3%

%

% 

 

  feedForwardAutoencoder.m:

function [activation] = feedForwardAutoencoder(theta, hiddenSize, visibleSize, data)



% theta: trained weights from the autoencoder

% visibleSize: the number of input units (probably 64) 

% hiddenSize: the number of hidden units (probably 25) 

% data: Our matrix containing the training data as columns.  So, data(:,i) is the i-th training example. 

  

% We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this 

% follows the notation convention of the lecture notes. 



W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);

b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);



%% ---------- YOUR CODE HERE --------------------------------------

%  Instructions: Compute the activation of the hidden layer for the Sparse Autoencoder.

activation  = sigmoid(W1*data+repmat(b1,[1,size(data,2)]));



%-------------------------------------------------------------------



end



%-------------------------------------------------------------------

% Here's an implementation of the sigmoid function, which you may find useful

% in your computation of the costs and the gradients.  This inputs a (row or

% column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). 



function sigm = sigmoid(x)

    sigm = 1 ./ (1 + exp(-x));

end

 

 

  参考资料:

     http://deeplearning.stanford.edu/wiki/index.php/Exercise:Self-Taught_Learning

     MNIST Dataset

 

 

 

 

你可能感兴趣的:(EL)