用SSD-Tensorflow做简易目标识别(小白入门)

这篇文章仅借用最简单的已训练好的模型对20类目标做检测。

SSD-Tensorflow是作者 balancap用TensorFlow实现的SSD算法,这里是 代码地址 。

下载好代码包并解压后:

用SSD-Tensorflow做简易目标识别(小白入门)_第1张图片

打开checkpoints文件夹并直接解压到当前目文件夹:

用SSD-Tensorflow做简易目标识别(小白入门)_第2张图片

找到SSD-Tensorflow-master下notebooks文件夹中的ssd_notebook.ipynb文件:

用SSD-Tensorflow做简易目标识别(小白入门)_第3张图片

可以直接在jupyter中打开(没有jupyter见后文)然后运行,结果如下:

用SSD-Tensorflow做简易目标识别(小白入门)_第4张图片或者复制代码在notebooks文件夹下创建.py文件,用python运行,结果与jupyter中运行结果一致。

import os
import math
import random

import numpy as np
import tensorflow as tf
import cv2

slim = tf.contrib.slim

%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

import sys
sys.path.append('../')

from nets import ssd_vgg_300, ssd_common, np_methods
from preprocessing import ssd_vgg_preprocessing
from notebooks import visualization

# TensorFlow session: grow memory when needed. TF, DO NOT USE ALL MY GPU MEMORY!!!
gpu_options = tf.GPUOptions(allow_growth=True)
config = tf.ConfigProto(log_device_placement=False, gpu_options=gpu_options)
isess = tf.InteractiveSession(config=config)

# Input placeholder.
net_shape = (300, 300)
data_format = 'NHWC'
img_input = tf.placeholder(tf.uint8, shape=(None, None, 3))
# Evaluation pre-processing: resize to SSD net shape.
image_pre, labels_pre, bboxes_pre, bbox_img = ssd_vgg_preprocessing.preprocess_for_eval(
    img_input, None, None, net_shape, data_format, resize=ssd_vgg_preprocessing.Resize.WARP_RESIZE)
image_4d = tf.expand_dims(image_pre, 0)

# Define the SSD model.
reuse = True if 'ssd_net' in locals() else None
ssd_net = ssd_vgg_300.SSDNet()
with slim.arg_scope(ssd_net.arg_scope(data_format=data_format)):
    predictions, localisations, _, _ = ssd_net.net(image_4d, is_training=False, reuse=reuse)

# Restore SSD model.
ckpt_filename = '../checkpoints/ssd_300_vgg.ckpt'
# ckpt_filename = '../checkpoints/VGG_VOC0712_SSD_300x300_ft_iter_120000.ckpt'
isess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(isess, ckpt_filename)

# SSD default anchor boxes.
ssd_anchors = ssd_net.anchors(net_shape)

# Main image processing routine.
def process_image(img, select_threshold=0.5, nms_threshold=.45, net_shape=(300, 300)):
    # Run SSD network.
    rimg, rpredictions, rlocalisations, rbbox_img = isess.run([image_4d, predictions, localisations, bbox_img],
                                                              feed_dict={img_input: img})
    
    # Get classes and bboxes from the net outputs.
    rclasses, rscores, rbboxes = np_methods.ssd_bboxes_select(
            rpredictions, rlocalisations, ssd_anchors,
            select_threshold=select_threshold, img_shape=net_shape, num_classes=21, decode=True)
    
    rbboxes = np_methods.bboxes_clip(rbbox_img, rbboxes)
    rclasses, rscores, rbboxes = np_methods.bboxes_sort(rclasses, rscores, rbboxes, top_k=400)
    rclasses, rscores, rbboxes = np_methods.bboxes_nms(rclasses, rscores, rbboxes, nms_threshold=nms_threshold)
    # Resize bboxes to original image shape. Note: useless for Resize.WARP!
    rbboxes = np_methods.bboxes_resize(rbbox_img, rbboxes)
    return rclasses, rscores, rbboxes

# Test on some demo image and visualize output.
path = '../demo/'
image_names = sorted(os.listdir(path))

img = mpimg.imread(path + image_names[-5])
rclasses, rscores, rbboxes =  process_image(img)

# visualization.bboxes_draw_on_img(img, rclasses, rscores, rbboxes, visualization.colors_plasma)
visualization.plt_bboxes(img, rclasses, rscores, rbboxes)

该模型能识别20类物品

{      'aeroplane'    'bicycle'    'bird'     'boat'    'bottle'    'bus'    'car'    'cat'    'chair'    'cow'    'diningtable'    'dog'    'horse'    'motorbike'    'person'    'pottedplant'    'sheep'    'sofa'    'train'    'tvmonitor' }

只需将读入的图片改为自己的图片就行(更改path或将自己的图片放到demo文件夹下)

网上随意找了一张图识别结果如下:

用SSD-Tensorflow做简易目标识别(小白入门)_第5张图片

若有侵权请联系我删除。

你可能感兴趣的:(目标检测,SSD,目标检测,SSD代码复现)