数据结构和算法(一)

程序 = 数据结构 + 算法

数据

数据: 程序的操作对象,用于描述客观事物.
数据的特点: 1️⃣ 可以输入到计算机 2️⃣ 可以被计算机处理

数据项: 一个数据元素由若干数据项组成
数据元素: 组成数据的对象的基本单位
数据对象: 性质相同的数据元素的集合(类似于数组)

结构: 数据元素之间不是独立的,存在特定的关系.这些关系即是结构;
数据结构:指的数据对象中的数据元素之间的关系

#include 

//声明一个结构体类型
struct Teacher{     //一种数据结构
    char *name;     //数据项--名字
    char *title;    //数据项--职称
    int  age;       //数据项--年龄
};

int main(int argc, const char * argv[]) {
   
    struct Teacher t1;     //数据元素;
    struct Teacher tArray[10]; //数据对象;
    
    t1.age = 18;       //数据项
    t1.name = "CC";    //数据项
    t1.title = "讲师";  //数据项
    
    printf("老师姓名:%s\n",t1.name);
    printf("老师年龄:%d\n",t1.age);
    printf("老师职称:%s\n",t1.title);
 
    return 0;
}
数据结构和算法(一)_第1张图片
数据

数据结构

  • 数据与数据直接的逻辑关系

  • [Set]


    数据结构和算法(一)_第2张图片
    集合结构
  • [Array, String, Dictionary]


    数据结构和算法(一)_第3张图片
    线性结构
  • [二叉树] 1对多


    数据结构和算法(一)_第4张图片
    树形结构
  • 多对多


    数据结构和算法(一)_第5张图片
    图形结构
  1. 物理结构
  • 数组


    数据结构和算法(一)_第6张图片
    树形存储
  • 链表


    数据结构和算法(一)_第7张图片
    链式存储

算法比较

算法:算法是解决特定问题步骤的描述, 在计算机中表现为指令的有限序列,并且每一个指令表示一个或者多个操作。

算法的特性

  • 输入输出
  • 有穷性
  • 确定性
  • 可行性

算法要求

  • 正确性
  • 可读性
  • 健壮性
  • 时间效率和存储量低

时间复杂度

大O表示法

  1. 用常数1取代运行时间中所有常数 3->1 O(1)
  2. 在修改运行次数函数中,只保留最高阶项 n3+2n2+5 -> O(n^3)
  3. 如果在最高阶存在且不等于1,则去除这个项目相乘的常数 2n^3 -> n^3
/*
 时间复杂度术语:
 1. 常数阶
 2. 线性阶
 3. 平方阶
 4. 对数阶
 5. 立方阶
 6. nlog阶
 7. 指数阶(不考虑) O(2^n)或者O(n!) 除非是非常小的n,否则会造成噩梦般的时间消耗. 这是一种不切实际的算法时间复杂度. 一般不考虑!
 */

/* 1. 常数阶时间复杂度计算 O(1) */
//1+1+1 = 3 O(1)
void testSum1(int n){
    int sum = 0;                //执行1次
    sum = (1+n)*n/2;            //执行1次
    printf("testSum1:%d\n",sum);//执行1次
}

//1+1+1+1+1+1+1 = 7 O(1)
void testSum2(int n){
    int sum = 0;                //执行1次
    sum = (1+n)*n/2;            //执行1次
    sum = (1+n)*n/2;            //执行1次
    sum = (1+n)*n/2;            //执行1次
    sum = (1+n)*n/2;            //执行1次
    sum = (1+n)*n/2;            //执行1次
    printf("testSum2:%d\n",sum);//执行1次
    
}
//x=x+1; 执行1次 O(1)
void add(int x){
    x = x+1;
}


/*2.线性阶时间复杂度*/
//x=x+1; 执行n次 O(n)
void add2(int x,int n){
    for (int i = 0; i < n; i++) {
        x = x+1;
    }
}

//1+(n+1)+n+1 = 3+2n -> O(n)
void testSum3(int n){
    int i,sum = 0;               //执行1次
    for (i = 1; i <= n; i++) {   //执行n+1次
        sum += i;                //执行n次
    }
    printf("testSum3:%d\n",sum);  //执行1次
}

/*3.对数阶*/
/*2的x次方等于n x = log2n  ->O(logn)*/
void testA(int n){
    int count = 1;         //执行1次
    //n = 10
    while (count < n) {
        count = count * 2;
    }
    
}


/*4.平方阶*/
//x=x+1; 执行n*n次 ->O(n^2)
void add3(int x,int n){
    for (int i = 0; i< n; i++) {
        for (int j = 0; j < n ; j++) {
            x=x+1;
        }
    }
}

//n+(n-1)+(n-2)+...+1 = n(n-1)/2 = n^2/2 + n/2 = O(n^2)
//sn = n(a1+an)/2
void testSum4(int n){
    int sum = 0;
    for(int i = 0; i < n;i++)
        for (int j = i; j < n; j++) {
            sum += j;
        }
    printf("textSum4:%d",sum);
    
}

//1+(n+1)+n(n+1)+n^2+n^2 = 2+3n^2+2n -> O(n^2)
void testSum5(int n){
    int i,j,x=0,sum = 0;           //执行1次
    for (i = 1; i <= n; i++) {     //执行n+1次
        for (j = 1; j <= n; j++) { //执行n(n+1)
            x++;                   //执行n*n次
            sum = sum + x;         //执行n*n次
        }
    }
    printf("testSum5:%d\n",sum);
}


/*5.立方阶*/
void testB(int n){
    int sum = 1;                         //执行1次
    for (int i = 0; i < n; i++) {        //执行n次
        for (int j = 0 ; j < n; j++) {   //执行n*n次
            for (int k = 0; k < n; k++) {//执行n*n*n次
                sum = sum * 2;          //执行n*n*n次 O(n^3)
            }
        }
    }
}

int main(int argc, const char * argv[]) {
    
    testSum1(100);
    testSum2(100);
    testSum3(100);
    
    return 0;
}
  • 按最高阶算
数据结构和算法(一)_第8张图片
常见时间复杂度计算

空间复杂度

/*
 程序空间计算因素:
 1. 寄存本身的指令
 2. 常数
 3. 变量
 4. 输入
 5. 对数据进行操作的辅助空间
 
 在考量算法的空间复杂度,主要考虑算法执行时所需要的辅助空间.
 空间复杂度计算:

 问题: 数组逆序,将一维数组a中的n个数逆序存放在原数组中.
 */

#include 

int main(int argc, const char * argv[]) {
    // insert code here...
    printf("Hello, World!\n");
   
    int n = 5;
    int a[10] = {1,2,3,4,5,6,7,8,9,10};
    
    //算法实现(1)
    int temp;
    for(int i = 0; i < n/2 ; i++){
        temp = a[i];
        a[i] = a[n-i-1];
        a[n-i-1] = temp;
    }

    for(int i = 0;i < 10;i++)
    {
        printf("%d\n",a[i]);

    }
    
    //算法实现(2)
    int b[10] = {0};
    for(int i = 0; i < n;i++){
        b[i] = a[n-i-1];
    }
    for(int i = 0; i < n; i++){
        a[i] = b[i];
    }
    for(int i = 0;i < 10;i++)
    {
        printf("%d\n",a[i]);
        
    }
    
    return 0;
}

你可能感兴趣的:(数据结构和算法(一))