batch,epoch,iteration batch_size, num_epochs
features = [tf.contrib.layers.real_valued_column("x", dimension=1)]
estimator = tf.contrib.learn.LinearRegressor(feature_columns=features)
x_train = np.array([1., 2., 3., 4.])
y_train = np.array([0., -1., -2., -3.])
x_eval = np.array([2., 5., 8., 1.])
y_eval = np.array([-1.01, -4.1, -7, 0.])
input_fn = tf.contrib.learn.io.numpy_input_fn({"x":x_train}, y_train,
batch_size=4,
num_epochs=1000)
eval_input_fn = tf.contrib.learn.io.numpy_input_fn(
{"x":x_eval}, y_eval, batch_size=4, num_epochs=1000)
estimator.fit(input_fn=input_fn, steps=1000)
train_loss = estimator.evaluate(input_fn=input_fn)
- 这里看下log
# config 部分
{'_model_dir': None,
'_save_checkpoints_secs': 600,
'_num_ps_replicas': 0,
'_keep_checkpoint_max': 5,
'_tf_random_seed': None,
'_task_type': None,
'_environment': 'local',
'_is_chief': True,
'_cluster_spec': ,
'_tf_config': gpu_options {per_process_gpu_memory_fraction: 1}
, '_num_worker_replicas': 0,
'_task_id': 0,
'_save_summary_steps': 100,
'_save_checkpoints_steps': None,
'_evaluation_master': '', '
_keep_checkpoint_every_n_hours': 10000,
'_master': ''}
#warning 部分
model directory
attempt to expand dims
no longer supported
#checkpoints和loss的一些保存及打印
Create CheckpointSaverHook.
Saving checkpoints
loss = 3.25, step = 1
global_step/sec: 661.358
Loss for final step: 6.06924e-10.
#evaluation信息和restore parameter
Starting evaluation at 2017-12-05-18:10:37
Restoring parameters from
Finished evaluation at 2017-12-05-18:10:39
Saving dict for global step 1000: global_step = 1000, loss = 8.37181e-10
train loss: {'loss': 8.3718071e-10, 'global_step': 1000}
eval loss: {'loss': 0.0025272823, 'global_step': 1000}