目标
在本节中,我们将学习
- 使用OpenCV查找图像的傅立叶变换
- 利用Numpy中可用的FFT函数
- 傅立叶变换的某些应用程序
- 我们将看到以下函数:cv.dft(),cv.idft()等
理论
傅立叶变换用于分析各种滤波器的频率特性。对于图像,使用2D离散傅里叶变换(DFT)查找频域。一种称为快速傅立叶变换(FFT)的快速算法用于DFT的计算。关于这些的详细信息可以在任何图像处理或信号处理教科书中找到。请参阅其他资源部分。
对于正弦信号,我们可以说是信号的频率,如果采用其频域,则可以看到的尖峰。如果对信号进行采样以形成离散信号,我们将获得相同的频域,但是在或范围内(对于N点DFT为)是周期性的。您可以将图像视为在两个方向上采样的信号。因此,在X和Y方向都进行傅立叶变换,可以得到图像的频率表示。
更直观地说,对于正弦信号,如果幅度在短时间内变化如此之快,则可以说它是高频信号。如果变化缓慢,则为低频信号。您可以将相同的想法扩展到图像。图像中的振幅在哪里急剧变化?在边缘点或噪声。因此,可以说边缘和噪声是图像中的高频内容。如果幅度没有太大变化,则它是低频分量。(一些链接已添加到“其他资源”,其中通过示例直观地说明了频率变换)。
现在,我们将看到如何找到傅立叶变换。
Numpy中的傅里叶变换
首先,我们将看到如何使用Numpy查找傅立叶变换。Numpy具有FFT软件包来执行此操作。np.fft.fft2()为我们提供了频率转换,它将是一个复杂的数组。它的第一个参数是输入图像,即灰度图像。第二个参数是可选的,它决定输出数组的大小。如果它大于输入图像的大小,则在计算FFT之前用零填充输入图像。如果小于输入图像,将裁切输入图像。如果未传递任何参数,则输出数组的大小将与输入的大小相同。
现在,一旦获得结果,零频率分量(DC分量)将位于左上角。如果要使其居中,则需要在两个方向上将结果都移动。只需通过函数np.fft.fftshift()即可完成。(它更容易分析)。找到频率变换后,就可以找到幅度谱。
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20*np.log(np.abs(fshift))
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
Result look like below:
结果看起来像下面这样:
看,您可以在中心看到更多白色区域,这表明低频内容更多。
因此,您发现了频率变换现在,您可以在频域中进行一些操作,例如高通滤波和重建图像,即找到逆DFT。为此,您只需用尺寸为60x60的矩形窗口遮罩即可消除低频。然后,使用np.fft.ifftshift()应用反向移位,以使DC分量再次出现在左上角。然后使用np.ifft2()函数找到逆FFT。同样,结果将是一个复数。您可以采用其绝对值。
rows, cols = img.shape
crow,ccol = rows//2 , cols//2
fshift[crow-30:crow+31, ccol-30:ccol+31] = 0
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)
img_back = np.real(img_back)
plt.subplot(131),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(img_back, cmap = 'gray')
plt.title('Image after HPF'), plt.xticks([]), plt.yticks([])
plt.subplot(133),plt.imshow(img_back)
plt.title('Result in JET'), plt.xticks([]), plt.yticks([])
plt.show()
结果看起来像下面这样:
结果表明高通滤波是边缘检测操作。这就是我们在“图像渐变”一章中看到的。这也表明大多数图像数据都存在于频谱的低频区域。无论如何,我们已经看到了如何在Numpy中找到DFT,IDFT等。现在,让我们看看如何在OpenCV中进行操作。
如果您仔细观察结果,尤其是最后一张JET颜色的图像,您会看到一些伪像(我用红色箭头标记的一个实例)。它在那里显示出一些波纹状结构,称为振铃效应。这是由我们用于遮罩的矩形窗口引起的。此掩码转换为正弦形状,从而导致此问题。因此,矩形窗口不用于过滤。更好的选择是高斯窗口。
OpenCV中的傅里叶变换
OpenCV为此提供了cv.dft()和cv.idft()函数。它返回与前一个相同的结果,但是有两个通道。第一个通道是结果的实部,第二个通道是结果的虚部。输入图像首先应转换为np.float32
。我们来看看怎么做。
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg',0)
dft = cv.dft(np.float32(img),flags = cv.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20*np.log(cv.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
注意
您还可以使用cv.cartToPolar(),它在单个镜头中同时返回幅值和相位
现在我们要做DFT的逆变换。在上一节中,我们创建了一个HPF,这次我们将看到如何删除图像中的高频内容,即我们将LPF应用到图像中。它实际上模糊了图像。为此,我们首先创建一个高值(1)在低频部分,即我们过滤低频内容,0在高频区。
rows, cols = img.shape
crow,ccol = rows/2 , cols/2
# 首先创建一个掩码,中心正方形为1,其余全为零
mask = np.zeros((rows,cols,2),np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1
# 应用掩码和逆DFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv.idft(f_ishift)
img_back = cv.magnitude(img_back[:,:,0],img_back[:,:,1])
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
看看结果:
注意
通常,OpenCV函数cv.dft()和cv.idft()比Numpy函数更快。但是Numpy函数更容易使用。有关性能问题的更多细节,请参见下面的部分。
DFT的性能优化
对于某些数组尺寸,DFT的计算性能较好。当数组大小为2的幂时,速度最快。对于大小为2、3和5的乘积的数组,也可以非常有效地进行处理。因此,如果您担心代码的性能,可以在找到DFT之前将数组的大小修改为任何最佳大小(通过填充零)。对于OpenCV,您必须手动填充零。但是对于Numpy,您指定FFT计算的新大小,它将自动为您填充零。
那么如何找到最优的大小呢?OpenCV为此提供了一个函数,cv.getOptimalDFTSize()。它同时适用于cv.dft()和np.fft.fft2()。让我们使用IPython魔术命令timeit来检查它们的性能。
In [16]: img = cv.imread('messi5.jpg',0)
In [17]: rows,cols = img.shape
In [18]: print("{} {}".format(rows,cols))
342 548
In [19]: nrows = cv.getOptimalDFTSize(rows)
In [20]: ncols = cv.getOptimalDFTSize(cols)
In [21]: print("{} {}".format(nrows,ncols))
360 576
参见,将大小(342,548)
修改为(360,576)
。现在让我们用零填充(对于OpenCV),并找到其DFT计算性能。您可以通过创建一个新的零数组并将数据复制到其中来完成此操作,或者使用cv.copyMakeBorder()。
nimg = np.zeros((nrows,ncols))
nimg[:rows,:cols] = img
或者:
right = ncols - cols
bottom = nrows - rows
bordertype = cv.BORDER_CONSTANT #只是为了避免PDF文件中的行中断
nimg = cv.copyMakeBorder(img,0,bottom,0,right,bordertype, value = 0)
现在,我们计算Numpy函数的DFT性能比较:
In [22]: %timeit fft1 = np.fft.fft2(img)
10 loops, best of 3: 40.9 ms per loop
In [23]: %timeit fft2 = np.fft.fft2(img,[nrows,ncols])
100 loops, best of 3: 10.4 ms per loop
它显示了4倍的加速。现在,我们将尝试使用OpenCV函数。
In [24]: %timeit dft1= cv.dft(np.float32(img),flags=cv.DFT_COMPLEX_OUTPUT)
100 loops, best of 3: 13.5 ms per loop
In [27]: %timeit dft2= cv.dft(np.float32(nimg),flags=cv.DFT_COMPLEX_OUTPUT)
100 loops, best of 3: 3.11 ms per loop
它还显示了4倍的加速。您还可以看到OpenCV函数比Numpy函数快3倍左右。也可以对逆FFT进行测试,这留给您练习。
为什么拉普拉斯算子是高通滤波器?
在一个论坛上也有人提出了类似的问题。问题是,为什么拉普拉斯变换是高通滤波器?为什么Sobel是HPF?等。第一个答案是关于傅里叶变换的。对于更大的FFT只需要拉普拉斯变换。分析下面的代码:
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
# 没有缩放参数的简单均值滤波器
mean_filter = np.ones((3,3))
# 创建高斯滤波器
x = cv.getGaussianKernel(5,10)
gaussian = x*x.T
# 不同的边缘检测滤波器
# x方向上的scharr
scharr = np.array([[-3, 0, 3],
[-10,0,10],
[-3, 0, 3]])
# x方向上的sobel
sobel_x= np.array([[-1, 0, 1],
[-2, 0, 2],
[-1, 0, 1]])
# y方向上的sobel
sobel_y= np.array([[-1,-2,-1],
[0, 0, 0],
[1, 2, 1]])
# 拉普拉斯变换
laplacian=np.array([[0, 1, 0],
[1,-4, 1],
[0, 1, 0]])
filters = [mean_filter, gaussian, laplacian, sobel_x, sobel_y, scharr]
filter_name = ['mean_filter', 'gaussian','laplacian', 'sobel_x', \
'sobel_y', 'scharr_x']
fft_filters = [np.fft.fft2(x) for x in filters]
fft_shift = [np.fft.fftshift(y) for y in fft_filters]
mag_spectrum = [np.log(np.abs(z)+1) for z in fft_shift]
for i in xrange(6):
plt.subplot(2,3,i+1),plt.imshow(mag_spectrum[i],cmap = 'gray')
plt.title(filter_name[i]), plt.xticks([]), plt.yticks([])
plt.show()
看看结果:
从图像中,您可以看到每种内核阻止的频率区域以及它允许经过的区域。从这些信息中,我们可以说出为什么每个内核都是HPF或LPF
附加资源
1.傅里叶变换的直观解释:http://cns-alumni.bu.edu/~slehar/fourier/fourier.html by Steven Lehar
- 傅里叶变换:http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm at HIPR
- 图像中的频率域指什么?http://dsp.stackexchange.com/q/1637/818
磐创AI技术博客资源汇总站:http://docs.panchuang.net/
PyTorch官方中文教程站:http://pytorch.panchuang.net/
OpenCV中文官方文档: http://woshicver.com/