tomcat源码分析(第三篇 tomcat请求原理解析--Connector源码分析)

Connector容器主要负责解析socket请求,在tomcat中的源码位于org.apache.catalina.connector和org.apache.coyote包路径下;通过上两节的分析,我们知道了Connector是Service的子容器,而Service又是Server的子容器。在server.xml文件中配置,然后在Catalina类中通过Digester完成实例化。在server.xml中默认配置了两种Connector的实现,分别用来处理Http请求和AJP请求。其实Connector的实现一共有以下三种:

1、Http Connector:解析HTTP请求,又分为BIO Http Connector和NIO Http Connector,即阻塞IO Connector和非阻塞IO Connector。本文主要分析NIO Http Connector的实现过程。

2、AJP:基于AJP协议,用于Tomcat与HTTP服务器通信定制的协议,能提供较高的通信速度和效率。如与Apache服务器集成时,采用这个协议。

3、APR HTTP Connector:用C实现,通过JNI调用的。主要提升对静态资源(如HTML、图片、CSS、JS等)的访问性能。

具体要使用哪种Connector可以在server.xml文件中通过protocol属性配置如下:

    

然后看一下Connector的构造器:

代码清单1

    //默认connector为HTTP/1.1 NIO
    public Connector() {
        this("org.apache.coyote.http11.Http11NioProtocol");
    }
    //根据protocol实现Connector
    public Connector(String protocol) {
        boolean aprConnector = AprLifecycleListener.isAprAvailable() &&
                AprLifecycleListener.getUseAprConnector();
        if ("HTTP/1.1".equals(protocol) || protocol == null) {
            if (aprConnector) {
                protocolHandlerClassName = "org.apache.coyote.http11.Http11AprProtocol";
            } else {
                protocolHandlerClassName = "org.apache.coyote.http11.Http11NioProtocol";
            }
        } else if ("AJP/1.3".equals(protocol)) {
            if (aprConnector) {
                protocolHandlerClassName = "org.apache.coyote.ajp.AjpAprProtocol";
            } else {
                protocolHandlerClassName = "org.apache.coyote.ajp.AjpNioProtocol";
            }
        } else {
            protocolHandlerClassName = protocol;
        }

        // 通过反射实例化一个protocolHandle,之后对请求数据的解析都由该protocolHandle完成,例如Http11AprProtocol
        ProtocolHandler p = null;
        try {
            Class clazz = Class.forName(protocolHandlerClassName);
            p = (ProtocolHandler) clazz.getConstructor().newInstance();
        } catch (Exception e) {
            log.error(sm.getString(
                    "coyoteConnector.protocolHandlerInstantiationFailed"), e);
        } finally {
            this.protocolHandler = p;
        }

        // Default for Connector depends on this system property
        setThrowOnFailure(Boolean.getBoolean("org.apache.catalina.startup.EXIT_ON_INIT_FAILURE"));
    }

通过分析Connector构造器的源码可以知道,每一个Connector对应了一个protocolHandler,一个protocolHandler被设计用来监听服务器某个端口的网络请求,但并不负责处理请求(处理请求由Container组件完成)。下面就以Http11NioProtocol为例分析Http请求的解析过程。

在Connector的startInterval方法中启动了protocolHandler,代码如下:

代码清单2

    protected void startInternal() throws LifecycleException {
        // Validate settings before starting
        if (getPort() < 0) {
            throw new LifecycleException(sm.getString(
                    "coyoteConnector.invalidPort", Integer.valueOf(getPort())));
        }

        setState(LifecycleState.STARTING);

        try {
            protocolHandler.start();  //启动protocolHandler
        } catch (Exception e) {
            throw new LifecycleException(
                    sm.getString("coyoteConnector.protocolHandlerStartFailed"), e);
        }
    }

Http11NioProtocol创建一个org.apache.tomcat.util.net.NioEndpoint实例,然后将监听端口并解析请求的工作全被委托给NioEndpoint实现。tomcat在使用Http11NioProtocol解析HTTP请求时一共设计了三种线程,分别为Acceptor,Poller和Worker。

1、Acceptor线程

Acceptor实现了Runnable接口,根据其命名就知道它是一个接收器,负责接收socket,其接收方法是serverSocket.accept()方式,获得SocketChannel对象,然后封装成tomcat自定义的org.apache.tomcat.util.net.NioChannel。虽然是Nio,但在接收socket时仍然使用传统的方法,使用阻塞方式实现。Acceptor以线程池的方式被创建和管理,在NioEndpoint的startInternal()方法中完成Acceptor的启动,源码如下:

代码清单3

    public void startInternal() throws Exception {

        if (!running) {
            running = true;
            paused = false;
            processorCache = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE,
                    socketProperties.getProcessorCache());
            eventCache = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE,
                    socketProperties.getEventCache());
            nioChannels = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE,
                    socketProperties.getBufferPool());

            // Create worker collection
            if (getExecutor() == null) {
                createExecutor();
            }
            //设置最大连接数,默认值为maxConnections = 10000,通过同步器AQS实现。
            initializeConnectionLatch();
            //创建、配置并启动线程Pooler
            pollers = new Poller[getPollerThreadCount()];    
            for (int i = 0; i < pollers.length; i++) {
                pollers[i] = new Poller();
                Thread pollerThread = new Thread(pollers[i], getName() + "-ClientPoller-" + i);
                pollerThread.setPriority(threadPriority);
                pollerThread.setDaemon(true);
                pollerThread.start();
            }
            startAcceptorThreads(); //启动Acceptor线程
        }
    }

继续追踪startAcceptorThreads的源码

代码清单4

    protected final void startAcceptorThreads() {
        int count = getAcceptorThreadCount();  //默认值为1
        acceptors = new ArrayList<>(count);

        for (int i = 0; i < count; i++) {
            Acceptor acceptor = new Acceptor<>(this);
            String threadName = getName() + "-Acceptor-" + i;
            acceptor.setThreadName(threadName);
            acceptors.add(acceptor);
            Thread t = new Thread(acceptor, threadName);
            t.setPriority(getAcceptorThreadPriority());
            t.setDaemon(getDaemon());
            t.start();
        }
    }

Acceptor线程的核心代码在它的run方法中

代码清单5

public void run() {

        int errorDelay = 0;

        // Loop until we receive a shutdown command
        while (endpoint.isRunning()) {
            // endpoint阻塞
            while (endpoint.isPaused() && endpoint.isRunning()) {
                state = AcceptorState.PAUSED;
                try {
                    Thread.sleep(50);
                } catch (InterruptedException e) {
                    // Ignore
                }
            }

            if (!endpoint.isRunning()) {
                break;
            }
            state = AcceptorState.RUNNING;
            try {
                //连接数到达最大值时,await等待释放connection,在Endpoint的startInterval方法中设置了最大连接数
                endpoint.countUpOrAwaitConnection();

                // Endpoint might have been paused while waiting for latch
                // If that is the case, don't accept new connections
                if (endpoint.isPaused()) {
                    continue;
                }
                //U是一个socketChannel
                U socket = null;           
                try {
                    //接收socket请求
                    socket = endpoint.serverSocketAccept();
                } catch (Exception ioe) {
                    // We didn't get a socket
                    endpoint.countDownConnection();
                    if (endpoint.isRunning()) {
                        errorDelay = handleExceptionWithDelay(errorDelay);
                        throw ioe;
                    } else {
                        break;
                    }
                }
                // Successful accept, reset the error delay
                errorDelay = 0;

                // Configure the socket
                if (endpoint.isRunning() && !endpoint.isPaused()) {
                    // endpoint的setSocketOptions方法对socket进行配置
                    if (!endpoint.setSocketOptions(socket)) {
                        endpoint.closeSocket(socket);
                    }
                } else {
                    endpoint.destroySocket(socket);
                }
            } catch (Throwable t) {
                ExceptionUtils.handleThrowable(t);
                String msg = sm.getString("endpoint.accept.fail");
                // APR specific.
                // Could push this down but not sure it is worth the trouble.
                if (t instanceof Error) {
                    Error e = (Error) t;
                    if (e.getError() == 233) {
                        // Not an error on HP-UX so log as a warning
                        // so it can be filtered out on that platform
                        // See bug 50273
                        log.warn(msg, t);
                    } else {
                        log.error(msg, t);
                    }
                } else {
                        log.error(msg, t);
                }
            }
        }
        state = AcceptorState.ENDED;
    }

Acceptor完成了socket请求的接收,然后交给NioEndpoint 进行配置,继续追踪Endpoint的setSocketOptions方法。

代码清单6

    protected boolean setSocketOptions(SocketChannel socket) {
        try {
            //设置为非阻塞
            socket.configureBlocking(false);
            Socket sock = socket.socket();
            socketProperties.setProperties(sock);

            NioChannel channel = nioChannels.pop();
            if (channel == null) {
                SocketBufferHandler bufhandler = new SocketBufferHandler(
                        socketProperties.getAppReadBufSize(),
                        socketProperties.getAppWriteBufSize(),
                        socketProperties.getDirectBuffer());
                if (isSSLEnabled()) {
                    channel = new SecureNioChannel(socket, bufhandler, selectorPool, this);
                } else {
                    channel = new NioChannel(socket, bufhandler);
                }
            } else {
                channel.setIOChannel(socket);
                channel.reset();
            }
            getPoller0().register(channel);  //调用Poller的register方法,完成channel的注册。
        } catch (Throwable t) {
            ExceptionUtils.handleThrowable(t);
            try {
                log.error("", t);
            } catch (Throwable tt) {
                ExceptionUtils.handleThrowable(tt);
            }
            // Tell to close the socket
            return false;
        }
        return true;
    }

分析setSocketOptions的源码可以知道,该方法的主要功能是利用传入的SocketChannel参数生成SecureNioChannel或者NioChannel,然后注册到Poller线程的selector中,可以进一步了解Java nio的相关知识,对这一块内容有更深的理解。

2、Poolor线程

Pollor同样实现了Runnable接口,是NioEndpoint类的内部类。在Endpoint的startInterval方法中创建、配置并启动了Pollor线程,见代码清单4。Poolor主要职责是不断轮询其selector,检查准备就绪的socket(有数据可读或可写),实现io的多路复用。其构造其中初始化了selector。

    public Poller() throws IOException {
        this.selector = Selector.open();
    }

在分析Acceptor的时候,提到了Acceptor接受到一个socket请求后,调用NioEndpoint的setSocketOptions方法(代码清单6),该方法生成了NioChannel后调用Pollor的register方法生成PoolorEvent后加入到Eventqueue,register方法的源码如下:

代码清单7

    public void register(final NioChannel socket) {
        socket.setPoller(this);
        NioSocketWrapper ka = new NioSocketWrapper(socket, NioEndpoint.this);
        socket.setSocketWrapper(ka);
        ka.setPoller(this);
        ka.setReadTimeout(getConnectionTimeout());
        ka.setWriteTimeout(getConnectionTimeout());
        ka.setKeepAliveLeft(NioEndpoint.this.getMaxKeepAliveRequests());
        ka.setSecure(isSSLEnabled());
        PollerEvent r = eventCache.pop();
        ka.interestOps(SelectionKey.OP_READ);//this is what OP_REGISTER turns into.
        //生成PoolorEvent并加入到Eventqueue
        if (r == null) r = new PollerEvent(socket, ka, OP_REGISTER);
        else r.reset(socket, ka, OP_REGISTER);
        addEvent(r);    
    }

Pollor的核心代码也在其run方法中

代码清单8

        public void run() {
            // 调用了destroy()方法后终止此循环
            while (true) {
                boolean hasEvents = false;
                try {
                    if (!close) {
                        hasEvents = events();
                        if (wakeupCounter.getAndSet(-1) > 0) {
                            //if we are here, means we have other stuff to do
                            //非阻塞的 select
                            keyCount = selector.selectNow();
                        } else {
                            //阻塞selector,直到有准备就绪的socket
                            keyCount = selector.select(selectorTimeout);
                        }
                        wakeupCounter.set(0);
                    }
                    if (close) {
                        //该方法遍历了eventqueue中的所有PollorEvent,然后依次调用PollorEvent的run,将socket注册到selector中。
                        events();  
                        timeout(0, false);
                        try {
                            selector.close();
                        } catch (IOException ioe) {
                            log.error(sm.getString("endpoint.nio.selectorCloseFail"), ioe);
                        }
                        break;
                    }
                } catch (Throwable x) {
                    ExceptionUtils.handleThrowable(x);
                    log.error("", x);
                    continue;
                }
                //either we timed out or we woke up, process events first
                if (keyCount == 0) hasEvents = (hasEvents | events());
 
                Iterator iterator =
                        keyCount > 0 ? selector.selectedKeys().iterator() : null;
                // 遍历就绪的socket
                while (iterator != null && iterator.hasNext()) {
                    SelectionKey sk = iterator.next();
                    NioSocketWrapper attachment = (NioSocketWrapper) sk.attachment();
                    // Attachment may be null if another thread has called
                    // cancelledKey()
                    if (attachment == null) {
                        iterator.remove();
                    } else {
                        //调用processKey方法对有数据读写的socket进行处理,在分析Worker线程时会分析该方法
                        iterator.remove();
                        processKey(sk, attachment);
                    }
                }
                //process timeouts
                timeout(keyCount, hasEvents);
            }//while

            getStopLatch().countDown();
        }

run方法中调用了events方法:

代码清单9

 public boolean events() {
            boolean result = false;
            PollerEvent pe = null;
            for (int i = 0, size = events.size(); i < size && (pe = events.poll()) != null; i++) {
                result = true;
                try {
                    pe.run();    //将pollerEvent中的每个socketChannel注册到selector中
                    pe.reset();
                    if (running && !paused) {
                        eventCache.push(pe);            //将注册了的pollerEvent加到endPoint.eventCache
                    }
                } catch (Throwable x) {
                    log.error("", x);
                }
            }

            return result;
        }

继续跟进PollerEvent的run方法:

代码清单10

        public void run() {
            if (interestOps == OP_REGISTER) {
                try {
                    //将SocketChannel注册到selector中,注册时间为SelectionKey.OP_READ读事件
                    socket.getIOChannel().register(
                        socket.getPoller().getSelector(), SelectionKey.OP_READ, socketWrapper);
                } catch (Exception x) {
                    log.error(sm.getString("endpoint.nio.registerFail"), x);
                }
            } else {
                final SelectionKey key = socket.getIOChannel().keyFor(socket.getPoller().getSelector());
                try {
                    if (key == null) {
                        socket.socketWrapper.getEndpoint().countDownConnection();
                    } else {
                        final NioSocketWrapper socketWrapper = (NioSocketWrapper) key.attachment();
                        if (socketWrapper != null) {
                            //we are registering the key to start with, reset the fairness counter.
                            int ops = key.interestOps() | interestOps;
                            socketWrapper.interestOps(ops);
                            key.interestOps(ops);
                        } else {
                            socket.getPoller().cancelledKey(key);
                        }
                    }
                } catch (CancelledKeyException ckx) {
                    try {
                        socket.getPoller().cancelledKey(key);
                    } catch (Exception ignore) {
                    }
                }
            }
        }

3、Worker线程

Worker线程即SocketProcessor是用来处理Socket请求的。SocketProcessor也同样是Endpoint的内部类。在Pollor的run方法中(代码清单8)监听到准备就绪的socket时会调用processKey方法进行处理:

代码清单11

        protected void processKey(SelectionKey sk, NioSocketWrapper attachment) {
            try {
                if (close) {
                    cancelledKey(sk);
                } else if (sk.isValid() && attachment != null) {
                    //有读写事件就绪时
                    if (sk.isReadable() || sk.isWritable()) {
                        if (attachment.getSendfileData() != null) {
                            processSendfile(sk, attachment, false);
                        } else {
                            unreg(sk, attachment, sk.readyOps());
                            boolean closeSocket = false;
                            // socket可读时,先处理读事件
                            if (sk.isReadable()) {
                                //调用processSocket方法进一步处理
                                if (!processSocket(attachment, SocketEvent.OPEN_READ, true)) {
                                    closeSocket = true;
                                }
                            }
                            //写事件
                            if (!closeSocket && sk.isWritable()) {
                                //调用processSocket方法进一步处理
                                if (!processSocket(attachment, SocketEvent.OPEN_WRITE, true)) {
                                    closeSocket = true;
                                }
                            }
                            if (closeSocket) {
                                cancelledKey(sk);
                            }
                        }
                    }
                } else {
                    //invalid key
                    cancelledKey(sk);
                }
            } catch (CancelledKeyException ckx) {
                cancelledKey(sk);
            } catch (Throwable t) {
                ExceptionUtils.handleThrowable(t);
                log.error("", t);
            }
        }

继续跟踪processSocket方法:

代码清单12

    public boolean processSocket(SocketWrapperBase socketWrapper,
            SocketEvent event, boolean dispatch) {
        try {
            if (socketWrapper == null) {
                return false;
            }
             // 尝试循环利用之前回收的SocketProcessor对象,如果没有可回收利用的则
            // 创建新的SocketProcessor对象
            SocketProcessorBase sc = processorCache.pop();
            if (sc == null) {
                创建SocketProcessor,即Worker线程,基于线程池模式进行创建和管理
                sc = createSocketProcessor(socketWrapper, event);
            } else {
                // 循环利用回收的SocketProcessor对象
                sc.reset(socketWrapper, event);
            }
            Executor executor = getExecutor();
            if (dispatch && executor != null) {
                //SocketProcessor实现了Runneble接口,可以直接传入execute方法进行处理
                executor.execute(sc);
            } else {
                sc.run();
            }
        } catch (RejectedExecutionException ree) {
            getLog().warn(sm.getString("endpoint.executor.fail", socketWrapper) , ree);
            return false;
        } catch (Throwable t) {
            ExceptionUtils.handleThrowable(t);
            getLog().error(sm.getString("endpoint.process.fail"), t);
            return false;
        }
        return true;
    }
    
    //NioEndpoint中createSocketProcessor创建一个SocketProcessor。
    protected SocketProcessorBase createSocketProcessor(
            SocketWrapperBase socketWrapper, SocketEvent event) {
        return new SocketProcessor(socketWrapper, event);
    }

总结:Http11NioProtocol是基于Java Nio实现的,创建了Acceptor、Pollor和Worker线程实现多路io的复用。三类线程之间的关系如下图所示:

tomcat源码分析(第三篇 tomcat请求原理解析--Connector源码分析)_第1张图片
image

Acceptor和Pollor之间是生产者消费者模式的关系,Acceptor不断向EventQueue中添加PollorEvent,Pollor轮询检查EventQueue中就绪的PollorEvent,然后发送给Work线程进行处理。

分析完了Connector,下一篇将继续分析另一个核心组件Connector

tomcat源码分析(第一篇 tomcat源码分析(第一篇 从整体架构开始))

tomcat源码分析(第二篇 tomcat启动过程详解)

tomcat源码分析(第四篇 tomcat请求处理原理解析--Container源码分析)

你可能感兴趣的:(tomcat源码分析(第三篇 tomcat请求原理解析--Connector源码分析))