Kafka 源码解析之 Controller 选举及服务启动流程

[TOC]
Kafka 源码解析就正式进入了 Controller 部分,Controller 作为 Kafka Server 端一个重要的组件,它的角色类似于其他分布式系统 Master 的角色,跟其他系统不一样的是,Kafka 集群的任何一台 Broker 都可以作为 Controller,但是在一个集群中同时只会有一个 Controller 是 alive 状态。Controller 在集群中负责的事务很多,比如:集群 meta 信息的一致性保证、Partition leader 的选举、broker 上下线等都是由 Controller 来具体负责。Controller 部分的内容还是比较多的,计划分5篇左右的文章讲述,本文先来看下 Controller 的简介、Controller 的选举、Controller 选举后服务的启动流程以及 Controller 的四种不同 leader 选举机制。分区状态机、副本副本状态机以及对各种 listener 的处理将在后续的文章中展开。

Controller 简介

在于分布式系统中,总会有一个地方需要对全局 meta 做一个统一的维护,Kafka 的 Controller 就是充当这个角色的。Kafka 简单的框架图如下所示

Kafka 源码解析之 Controller 选举及服务启动流程_第1张图片
image.png

Controller 是运行在 Broker 上的,任何一台 Broker 都可以作为 Controller,但是一个集群同时只能存在一个 Controller,也就意味着 Controller 与数据节点是在一起的,Controller 做的主要事情如下:

  1. Broker 的上线、下线处理;
  2. 新创建的 topic 或已有 topic 的分区扩容,处理分区副本的分配、leader 选举;
  3. 管理所有副本的状态机和分区的状态机,处理状态机的变化事件;
  4. topic 删除、副本迁移、leader 切换等处理。

Controller 选举过程

Kafka 的每台 Broker 在启动过程中,都会启动 Controller 服务,相关代码如下:

def startup() {
  info("starting")
  val canStartup = isStartingUp.compareAndSet(false, true)
  if (canStartup) {
    /* start kafka controller */
    //note: 启动 controller
    kafkaController = new KafkaController(config, zkUtils, brokerState, time, metrics, threadNamePrefix)
    kafkaController.startup()
  }
}

Controller 启动
Kafka Server 在启动的过程中,都会去启动 Controller 服务,Controller 启动方法如下:

//NOTE: 当 broker 的 controller 模块启动时触发,它比并不保证当前 broker 是 controller,它仅仅是注册 registerSessionExpirationListener 和启动 controllerElector
def startup() = {
  inLock(controllerContext.controllerLock) {
    info("Controller starting up")
    registerSessionExpirationListener() // note: 注册回话失效的监听器
    isRunning = true
    controllerElector.startup //note: 启动选举过程
    info("Controller startup complete")
  }
}

Controller 在 startup() 方法中主要实现以下两部分功能:

  1. registerSessionExpirationListener() 方法注册连接 zk 的超时监听器;
  2. controllerElector.startup() 方法,监听 zk 上 controller 节点的变化,并触发 controller 选举方法。

Controller 选举
Controller 在启动时,会初始化 ZookeeperLeaderElector 对象,并调用其 startup() 启动相应的流程,具体过程如下:

def startup {
  inLock(controllerContext.controllerLock) {
    controllerContext.zkUtils.zkClient.subscribeDataChanges(electionPath, leaderChangeListener)
    elect
  }
}

在 startup() 方法中,主要做了下面两件事情:

  1. 监听 zk 的 /controller 节点的数据变化,一旦节点有变化,立刻通过 LeaderChangeListener 的方法进行相应的处理;
  2. elect 在 controller 不存在的情况下选举 controller,存在的话,就是从 zk 获取当前的 controller 节点信息。

Controller 选举方法 elect
ZookeeperLeaderElector 的 elect 方法实现如下:

//note: 从 zk 获取当前的 controller 信息
def getControllerID(): Int = {
  controllerContext.zkUtils.readDataMaybeNull(electionPath)._1 match {
     case Some(controller) => KafkaController.parseControllerId(controller)
     case None => -1
  }
}

//note: 进行 controller 选举
def elect: Boolean = {
  val timestamp = time.milliseconds.toString
  val electString = Json.encode(Map("version" -> 1, "brokerid" -> brokerId, "timestamp" -> timestamp))

 leaderId = getControllerID
  /*
   * We can get here during the initial startup and the handleDeleted ZK callback. Because of the potential race condition,
   * it's possible that the controller has already been elected when we get here. This check will prevent the following
   * createEphemeralPath method from getting into an infinite loop if this broker is already the controller.
   */
  if(leaderId != -1) {
     debug("Broker %d has been elected as leader, so stopping the election process.".format(leaderId))
     return amILeader
  }

  try {
    val zkCheckedEphemeral = new ZKCheckedEphemeral(electionPath,
                                                    electString,
                                                    controllerContext.zkUtils.zkConnection.getZookeeper,
                                                    JaasUtils.isZkSecurityEnabled())
    zkCheckedEphemeral.create() //note: 没有异常的话就是创建成功了
    info(brokerId + " successfully elected as leader")
    leaderId = brokerId
    onBecomingLeader() //note: 成为了 controller
  } catch {
    case _: ZkNodeExistsException => //note: 在创建时,发现已经有 broker 提前注册成功
      // If someone else has written the path, then
      leaderId = getControllerID

      if (leaderId != -1)
        debug("Broker %d was elected as leader instead of broker %d".format(leaderId, brokerId))
      else
        warn("A leader has been elected but just resigned, this will result in another round of election")

    case e2: Throwable => //note: 抛出了其他异常,那么重新选举 controller
      error("Error while electing or becoming leader on broker %d".format(brokerId), e2)
      resign()
  }
  amILeader
}

def amILeader : Boolean = leaderId == brokerId

其实现逻辑如下:

  1. 先获取 zk 的 /cotroller 节点的信息,获取 controller 的 broker id,如果该节点不存在(比如集群刚创建时),那么获取的 controller id 为-1;
  2. 如果 controller id 不为-1,即 controller 已经存在,直接结束流程;
  3. 如果 controller id 为-1,证明 controller 还不存在,这时候当前 broker 开始在 zk 注册 controller;
  4. 如果注册成功,那么当前 broker 就成为了 controller,这时候开始调用 onBecomingLeader() 方法,正式初始化 controller(注意:controller 节点是临时节点,如果当前 controller 与 zk 的 session 断开,那么 controller 的临时节点会消失,会触发 controller 的重新选举);
  5. 如果注册失败(刚好 controller 被其他 broker 创建了、抛出异常等),那么直接返回。

在这里 controller 算是成功被选举出来了,controller 选举过程实际上就是各个 Broker 抢占式注册该节点,注册成功的便为 Controller。

controller 节点监听 LeaderChangeListener
LeaderChangeListener 主要是监听 zk 上的 Controller 节点变化,如果该节点内容变化或者节点被删除,那么会触发 handleDataChange() 和 handleDataDeleted() 方法,具体实现如下:

//note: 监控 controller 内容的变化
class LeaderChangeListener extends IZkDataListener with Logging {
  /**
   * Called when the leader information stored in zookeeper has changed. Record the new leader in memory
   * @throws Exception On any error.
   */
  @throws[Exception]
  def handleDataChange(dataPath: String, data: Object) {
    val shouldResign = inLock(controllerContext.controllerLock) {
      val amILeaderBeforeDataChange = amILeader
      leaderId = KafkaController.parseControllerId(data.toString)
      info("New leader is %d".format(leaderId))
      // The old leader needs to resign leadership if it is no longer the leader
      amILeaderBeforeDataChange && !amILeader
    }

    //note: 之前是 controller,现在不是了
    if (shouldResign)
      onResigningAsLeader() //note: 关闭 controller 服务
  }

  /**
   * Called when the leader information stored in zookeeper has been delete. Try to elect as the leader
   * @throws Exception
   *             On any error.
   */
  //note: 如果之前是 controller,现在这个节点被删除了,那么首先退出 controller 进程,然后开始重新选举 controller
  @throws[Exception]
  def handleDataDeleted(dataPath: String) {
    val shouldResign = inLock(controllerContext.controllerLock) {
      debug("%s leader change listener fired for path %s to handle data deleted: trying to elect as a leader"
        .format(brokerId, dataPath))
      amILeader
    }

    if (shouldResign)
      onResigningAsLeader()

    inLock(controllerContext.controllerLock) {
      elect
    }
  }
}

处理过程如下:

  1. 如果 /controller 节点内容变化,那么更新一下 controller 最新的节点信息,如果该节点刚好之前是 controller,现在不是了,那么需要执行 controller 关闭操作,即 onResigningAsLeader() 方法;
  2. 如果 /controller 节点被删除,如果该节点刚好之前是 controller,那么需要执行 controller 关闭操作,即 onResigningAsLeader() 方法,然后再执行 elect 方法重新去选举 controller;

Controller 服务启动流程

Controller 节点选举出来之后,ZookeeperLeaderElector 就会调用 onBecomingLeader() 方法初始化 KafkaController 的相关内容,在 KafkaController 对 ZookeeperLeaderElector 的初始化中可以看到 onBecomingLeader() 这个方法实际上是 KafkaController 的 onControllerFailover() 方法。

class KafkaController{
    private val controllerElector = new ZookeeperLeaderElector(controllerContext, ZkUtils.ControllerPath, onControllerFailover,
                                                               onControllerResignation, config.brokerId, time) //note: controller 通过 zk 选举
}

//note: controller 临时节点监控及 controller 选举
class ZookeeperLeaderElector(controllerContext: ControllerContext,
                             electionPath: String, //note: 路径是 /controller
                             onBecomingLeader: () => Unit, //note: onControllerFailover() 方法
                             onResigningAsLeader: () => Unit, //note: onControllerResignation() 方法
                             brokerId: Int,
                             time: Time)

onControllerFailover 启动及初始化
下面开始进入 KafkaController 正式初始化的讲解过程中,onControllerFailover() 方法实现如下:

//note: 如果当前 Broker 被选为 controller 时, 当被选为 controller,它将会做以下操作
//note: 1. 注册 controller epoch changed listener;
//note: 2. controller epoch 自增加1;
//note: 3. 初始化 KafkaController 的上下文信息 ControllerContext,它包含了当前的 topic、存活的 broker 以及已经存在的 partition 的 leader;
//note: 4. 启动 controller 的 channel 管理: 建立与其他 broker 的连接的,负责与其他 broker 之间的通信;
//note: 5. 启动 ReplicaStateMachine(副本状态机,管理副本的状态);
//note: 6. 启动 PartitionStateMachine(分区状态机,管理分区的状态);
//note: 如果在 Controller 服务初始化的过程中,出现了任何不可预期的 异常/错误,它将会退出当前的进程,这确保了可以再次触发 controller 的选举
def onControllerFailover() {
  if(isRunning) {
    info("Broker %d starting become controller state transition".format(config.brokerId))
    readControllerEpochFromZookeeper() //note: 从 zk 获取 controllrt 的 epoch 和 zkVersion 值
    incrementControllerEpoch(zkUtils.zkClient) //note: 更新 Controller 的 epoch 和 zkVersion 值,可能会抛出异常

    // before reading source of truth from zookeeper, register the listeners to get broker/topic callbacks
    //note: 再从 zk 获取数据初始化前,注册一些关于 broker/topic 的回调监听器
    registerReassignedPartitionsListener() //note: 监控路径【/admin/reassign_partitions】,分区迁移监听
    registerIsrChangeNotificationListener() //note: 监控路径【/isr_change_notification】,isr 变动监听
    registerPreferredReplicaElectionListener() //note: 监听路径【/admin/preferred_replica_election】,最优 leader 选举
    partitionStateMachine.registerListeners()//note: 监听 Topic 的创建与删除
    replicaStateMachine.registerListeners() //note: 监听 broker 的上下线

    //note: 初始化 controller 相关的变量信息:包括 alive broker 列表、partition 的详细信息等
    initializeControllerContext() //note: 初始化 controller 相关的变量信息

    // We need to send UpdateMetadataRequest after the controller context is initialized and before the state machines
    // are started. The is because brokers need to receive the list of live brokers from UpdateMetadataRequest before
    // they can process the LeaderAndIsrRequests that are generated by replicaStateMachine.startup() and
    // partitionStateMachine.startup().
    //note: 在 controller contest 初始化之后,我们需要发送 UpdateMetadata 请求在状态机启动之前,这是因为 broker 需要从 UpdateMetadata 请求
    //note: 获取当前存活的 broker list, 因为它们需要处理来自副本状态机或分区状态机启动发送的 LeaderAndIsr 请求
    sendUpdateMetadataRequest(controllerContext.liveOrShuttingDownBrokerIds.toSeq)

    //note: 初始化 replica 的状态信息: replica 是存活状态时是 OnlineReplica, 否则是 ReplicaDeletionIneligible
    replicaStateMachine.startup() //note: 初始化 replica 的状态信息
    //note: 初始化 partition 的状态信息:如果 leader 所在 broker 是 alive 的,那么状态为 OnlinePartition,否则为 OfflinePartition
    //note: 并状态为 OfflinePartition 的 topic 选举 leader
    partitionStateMachine.startup() //note: 初始化 partition 的状态信息

    // register the partition change listeners for all existing topics on failover
    //note: 为所有的 topic 注册 partition change 监听器
    controllerContext.allTopics.foreach(topic => partitionStateMachine.registerPartitionChangeListener(topic))
    info("Broker %d is ready to serve as the new controller with epoch %d".format(config.brokerId, epoch))
    maybeTriggerPartitionReassignment() //note: 触发一次分区副本迁移的操作
    maybeTriggerPreferredReplicaElection() //note: 触发一次分区的最优 leader 选举操作
    if (config.autoLeaderRebalanceEnable) { //note: 如果开启自动均衡
      info("starting the partition rebalance scheduler")
      autoRebalanceScheduler.startup()
      autoRebalanceScheduler.schedule("partition-rebalance-thread", checkAndTriggerPartitionRebalance,
        5, config.leaderImbalanceCheckIntervalSeconds.toLong, TimeUnit.SECONDS) //note: 发送最新的 meta 信息
    }
    deleteTopicManager.start() //note: topic 删除线程启动
  }
  else
    info("Controller has been shut down, aborting startup/failover")
}

简单来说,onControllerFailover() 所做的事情如下:

  1. readControllerEpochFromZookeeper() 方法更新 controller 的 epoch 及 zkVersion 信息,incrementControllerEpoch() 方法将 controller 的 epoch 字增加1,并更新到 zk 中;
  2. 在控制器中注册相关的监听器,主要有6类类型,如下面表格中所列;
  3. 通过 initializeControllerContext() 方法初始化 Controller 的上下文信息,更新 Controller 的相关缓存信息、并启动 ControllerChannelManager 等;
  4. 向所有 alive 的 broker 发送 Update-Metadata 请求,broker 通过这个请求获取当前集群中 alive 的 broker 列表;
  5. 启动副本状态机,初始化所有 Replica 的状态信息,如果 Replica 所在节点是 alive 的,那么状态更新为 OnlineReplica, 否则更新为 ReplicaDeletionIneligible;
    6.启动分区状态机,初始化所有 Partition 的状态信息,如果 leader 所在 broker 是 alive 的,那么状态更新为 OnlinePartition,否则更新为 OfflinePartition;
  6. 为当前所有 topic 注册一个 PartitionModificationsListener 监听器,监听所有 Topic 分区数的变化;
  7. KafkaController 初始化完成,正式启动;
  8. KafkaController 启动后,触发一次副本迁移,如果需要的情况下;
  9. KafkaController 启动后,触发一次最优 leader 选举操作,如果需要的情况下;
  10. KafkaController 启动后,如果开启了自动 leader 均衡,启动自动 leader 均衡线程,它会根据配置的信息定期运行。

KafkaController 需要监听的 zk 节点、触发的监听方法及作用如下:

Kafka 源码解析之 Controller 选举及服务启动流程_第2张图片
image.png

在 KafkaController 中

  • 有两个状态机:分区状态机和副本状态机;
  • 一个管理器:Channel 管理器,负责管理所有的 Broker 通信;
  • 相关缓存:Partition 信息、Topic 信息、broker id 信息等;
  • 四种 leader 选举机制:分别是用 leader offline、broker 掉线、partition reassign、最优 leader 选举时触发;

如下图所示:

Kafka 源码解析之 Controller 选举及服务启动流程_第3张图片
image.png

initializeControllerContext 初始化 Controller 上下文信息

在 initializeControllerContext() 初始化 KafkaController 上下文信息的方法中,主要做了以下事情:

  1. 从 zk 获取所有 alive broker 列表,记录到 liveBrokers;
  2. 从 zk 获取所有的 topic 列表,记录到 allTopic 中;
  3. 从 zk 获取所有 Partition 的 replica 信息,更新到 partitionReplicaAssignment 中;
  4. 从 zk 获取所有 Partition 的 LeaderAndIsr 信息,更新到 partitionLeadershipInfo 中;
  5. 调用 startChannelManager() 启动 Controller 的 Channel Manager;
  6. 通过 initializePreferredReplicaElection() 初始化需要最优 leader 选举的 Partition 列表,记录到 partitionsUndergoingPreferredReplicaElection 中;
  7. 通过 initializePartitionReassignment() 方法初始化需要进行副本迁移的 Partition 列表,记录到 partitionsBeingReassigned 中;
  8. 通过 initializeTopicDeletion() 方法初始化需要删除的 topic 列表及 TopicDeletionManager 对象;

综上,这个方法最主要的作用就是相关的 meta 信息及启动 Channel 管理器,其具体实现如下所示:

//note: 初始化 KafkaController 的上下文数据
private def initializeControllerContext() {
  // update controller cache with delete topic information
  controllerContext.liveBrokers = zkUtils.getAllBrokersInCluster().toSet //note: 初始化 zk 的 broker_list 信息
  controllerContext.allTopics = zkUtils.getAllTopics().toSet //note: 初始化所有的 topic 信息
  //note: 初始化所有 topic 的所有 partition 的 replica 分配
  controllerContext.partitionReplicaAssignment = zkUtils.getReplicaAssignmentForTopics(controllerContext.allTopics.toSeq)
  //note: 下面两个都是新创建的空集合
  controllerContext.partitionLeadershipInfo = new mutable.HashMap[TopicAndPartition, LeaderIsrAndControllerEpoch]
  controllerContext.shuttingDownBrokerIds = mutable.Set.empty[Int]
  // update the leader and isr cache for all existing partitions from Zookeeper
  updateLeaderAndIsrCache() //note: 获取 topic-partition 的详细信息,更新到 partitionLeadershipInfo 中
  // start the channel manager
  startChannelManager() //note: 启动连接所有的 broker 的线程, 根据 broker/ids 的临时去判断要连接哪些 broker
  initializePreferredReplicaElection() //note: 初始化需要进行最优 leader 选举的 partition
  initializePartitionReassignment() //note: 初始化需要进行分区副本迁移的 partition
  initializeTopicDeletion() //note: 初始化要删除的 topic 及后台的 topic 删除线程,还有不能删除的 topic 集合
  info("Currently active brokers in the cluster: %s".format(controllerContext.liveBrokerIds))
  info("Currently shutting brokers in the cluster: %s".format(controllerContext.shuttingDownBrokerIds))
  info("Current list of topics in the cluster: %s".format(controllerContext.allTopics))
}

最优 leader 选举:就是默认选择 Replica 分配中第一个 replica 作为 leader,为什么叫做最优 leader 选举呢?因为 Kafka 在给每个 Partition 分配副本时,它会保证分区的主副本会均匀分布在所有的 broker 上,这样的话只要保证第一个 replica 被选举为 leader,读写流量就会均匀分布在所有的 Broker 上,当然这是有一个前提的,那就是每个 Partition 的读写流量相差不多,但是在实际的生产环境,这是不太可能的,所以一般情况下,大集群是不建议开自动 leader 均衡的,可以通过额外的算法计算、手动去触发最优 leader 选举。

Controller Channel Manager

initializeControllerContext() 方法会通过 startChannelManager() 方法初始化 ControllerChannelManager 对象,如下所示:

//note: 启动 ChannelManager 线程
private def startChannelManager() {
  controllerContext.controllerChannelManager = new ControllerChannelManager(controllerContext, config, time, metrics, threadNamePrefix)
  controllerContext.controllerChannelManager.startup()
}

ControllerChannelManager 在初始化时,会为集群中的每个节点初始化一个 ControllerBrokerStateInfo 对象,该对象包含四个部分:

  1. NetworkClient:网络连接对象;
  2. Node:节点信息;
  3. BlockingQueue:请求队列;
  4. RequestSendThread:请求的发送线程。

其具体实现如下所示:

//note: 控制所有已经存活 broker 的网络连接
class ControllerChannelManager(controllerContext: ControllerContext, config: KafkaConfig, time: Time, metrics: Metrics, threadNamePrefix: Option[String] = None) extends Logging {
  protected val brokerStateInfo = new HashMap[Int, ControllerBrokerStateInfo]
  controllerContext.liveBrokers.foreach(addNewBroker) //note: 获取目前已经存活的所有 broker
  //note: 添加一个新的 broker(初始化时,这个方法相当于连接当前存活的所有 broker)
  //note: 建立网络连接、启动请求发送线程
  private def addNewBroker(broker: Broker) {
    val messageQueue = new LinkedBlockingQueue[QueueItem]
    debug("Controller %d trying to connect to broker %d".format(config.brokerId, broker.id))
    val brokerEndPoint = broker.getBrokerEndPoint(config.interBrokerListenerName)
    val brokerNode = new Node(broker.id, brokerEndPoint.host, brokerEndPoint.port)
    val networkClient = { //note: 初始化 NetworkClient
      val channelBuilder = ChannelBuilders.clientChannelBuilder(
        config.interBrokerSecurityProtocol,
        LoginType.SERVER,
        config.values,
        config.saslMechanismInterBrokerProtocol,
        config.saslInterBrokerHandshakeRequestEnable
      )
      val selector = new Selector(
        NetworkReceive.UNLIMITED,
        Selector.NO_IDLE_TIMEOUT_MS,
        metrics,
        time,
        "controller-channel",
        Map("broker-id" -> broker.id.toString).asJava,
        false,
        channelBuilder
      )
      new NetworkClient(
        selector,
        new ManualMetadataUpdater(Seq(brokerNode).asJava),
        config.brokerId.toString,
        1,
        0,
        Selectable.USE_DEFAULT_BUFFER_SIZE,
        Selectable.USE_DEFAULT_BUFFER_SIZE,
        config.requestTimeoutMs,
        time,
        false
      )
    }
    val threadName = threadNamePrefix match {
      case None => "Controller-%d-to-broker-%d-send-thread".format(config.brokerId, broker.id)
      case Some(name) => "%s:Controller-%d-to-broker-%d-send-thread".format(name, config.brokerId, broker.id)
    }

    val requestThread = new RequestSendThread(config.brokerId, controllerContext, messageQueue, networkClient,
      brokerNode, config, time, threadName) //note: 初始化 requestThread
    requestThread.setDaemon(false) //note: 非守护进程
    brokerStateInfo.put(broker.id, new ControllerBrokerStateInfo(networkClient, brokerNode, messageQueue, requestThread))
  }
}

清楚了上面的逻辑,再来看 KafkaController 部分是如何向 Broker 发送请求的?

sendRequest(brokerId: Int, apiKey: ApiKeys, request: AbstractRequest.Builder[_ <: AbstractRequest],
                callback: AbstractResponse => Unit = null) = {
  controllerContext.controllerChannelManager.sendRequest(brokerId, apiKey, request, callback)
}

KafkaController 实际上是调用的 ControllerChannelManager 的 sendRequest() 方法向 Broker 发送请求信息,其实现如下所示:

//note: 向 broker 发送请求(并没有真正发送,只是添加到对应的 queue 中)
def sendRequest(brokerId: Int, apiKey: ApiKeys, request: AbstractRequest.Builder[_ <: AbstractRequest],
                callback: AbstractResponse => Unit = null) {
  brokerLock synchronized {
    val stateInfoOpt = brokerStateInfo.get(brokerId)
    stateInfoOpt match {
      case Some(stateInfo) =>
        stateInfo.messageQueue.put(QueueItem(apiKey, request, callback))
      case None =>
        warn("Not sending request %s to broker %d, since it is offline.".format(request, brokerId))
    }
  }
}

它实际上只是把对应的请求添加到该 Broker 对应的 MessageQueue 中,并没有真正的去发送请求,请求的的发送是在 每台 Broker 对应的 RequestSendThread 中处理的。

Controller 原生的四种 leader 选举机制

KafkaController 在初始化时,也会初始化四种不同的 leader 选举机制,如下所示:

//note: partition leader 挂掉时,选举 leader
val offlinePartitionSelector = new OfflinePartitionLeaderSelector(controllerContext, config)
//note: 重新分配分区时,leader 选举
private val reassignedPartitionLeaderSelector = new ReassignedPartitionLeaderSelector(controllerContext)
//note: 使用最优的副本作为 leader
private val preferredReplicaPartitionLeaderSelector = new PreferredReplicaPartitionLeaderSelector(controllerContext)
//note: broker 掉线时,重新选举 leader
private val controlledShutdownPartitionLeaderSelector = new ControlledShutdownLeaderSelector(controllerContext)

四种 leader 选举实现类及对应触发条件如下所示:

Kafka 源码解析之 Controller 选举及服务启动流程_第4张图片
image.png

OfflinePartitionLeaderSelector
OfflinePartitionLeaderSelector Partition leader 选举的逻辑是:

  1. 如果 isr 中至少有一个副本是存活的,那么从该 Partition 存活的 isr 中选举第一个副本作为新的 leader,存活的 isr 作为新的 isr;
  2. 否则,如果脏选举(unclear elect)是禁止的,那么就抛出 NoReplicaOnlineException 异常;
  3. 否则,即允许脏选举的情况下,从存活的、所分配的副本(不在 isr 中的副本)中选出一个副本作为新的 leader 和新的 isr 集合;
  4. 否则,即是 Partition 分配的副本没有存活的,抛出 NoReplicaOnlineException 异常;

一旦 leader 被成功注册到 zk 中,它将会更新到 KafkaController 缓存中的 allLeaders 中。

//note: 对于 LeaderAndIsrRequest, 选举一个新的 leader、isr 和 receiving replicas
//note: 1.如果 isr 中至少有一个副本是存活的,那么存活的 isr 中选举一个副本作为新的 leader,存活的 isr 作为新的 isr;
//note: 2.否则,如果脏选举(unclear elect)是禁止的,那么就抛出 NoReplicaOnlineException 异常;
//note: 3.否则,从存活的、所分配的副本中选出一个副本作为新的 leader 和新的 isr 集合;
//note: 4.否则,partition 分配的副本没有存活的,抛出 NoReplicaOnlineException 异常;
//note: 一旦 leader 被成功注册到 zk 中,它将更新缓存中的 allLeaders。
class OfflinePartitionLeaderSelector(controllerContext: ControllerContext, config: KafkaConfig)
  extends PartitionLeaderSelector with Logging {
  this.logIdent = "[OfflinePartitionLeaderSelector]: "

  //note: leader 选举,过程如上面所述
  def selectLeader(topicAndPartition: TopicAndPartition, currentLeaderAndIsr: LeaderAndIsr): (LeaderAndIsr, Seq[Int]) = {
    controllerContext.partitionReplicaAssignment.get(topicAndPartition) match {
      case Some(assignedReplicas) =>
        //note: AR 中还存活的副本
        val liveAssignedReplicas = assignedReplicas.filter(r => controllerContext.liveBrokerIds.contains(r))
        //note: 当前 isr 中还存活的副本
        val liveBrokersInIsr = currentLeaderAndIsr.isr.filter(r => controllerContext.liveBrokerIds.contains(r))
        val currentLeaderEpoch = currentLeaderAndIsr.leaderEpoch //note: epoch
        val currentLeaderIsrZkPathVersion = currentLeaderAndIsr.zkVersion //note: zkVersion
        //note: 选取新的 leader 和 isr
        val newLeaderAndIsr =
          if (liveBrokersInIsr.isEmpty) { //note: 当前 isr 中副本都挂了
            // Prior to electing an unclean (i.e. non-ISR) leader, ensure that doing so is not disallowed by the configuration
            // for unclean leader election.
            if (!LogConfig.fromProps(config.originals, AdminUtils.fetchEntityConfig(controllerContext.zkUtils,
              ConfigType.Topic, topicAndPartition.topic)).uncleanLeaderElectionEnable) { //note: 不允许脏选举的话,抛异常
              throw new NoReplicaOnlineException(("No broker in ISR for partition " +
                "%s is alive. Live brokers are: [%s],".format(topicAndPartition, controllerContext.liveBrokerIds)) +
                " ISR brokers are: [%s]".format(currentLeaderAndIsr.isr.mkString(",")))
            }
            debug("No broker in ISR is alive for %s. Pick the leader from the alive assigned replicas: %s"
              .format(topicAndPartition, liveAssignedReplicas.mkString(",")))
            if (liveAssignedReplicas.isEmpty) { //note: 副本全挂了,抛异常
              throw new NoReplicaOnlineException(("No replica for partition " +
                "%s is alive. Live brokers are: [%s],".format(topicAndPartition, controllerContext.liveBrokerIds)) +
                " Assigned replicas are: [%s]".format(assignedReplicas))
            } else { //note: 从存活的副本中选举 leader(不能保证选举的是 LEO 最大的副本),并将该副本作为 isr
              ControllerStats.uncleanLeaderElectionRate.mark()
              val newLeader = liveAssignedReplicas.head //note: 选择第一个作为 leader
              warn("No broker in ISR is alive for %s. Elect leader %d from live brokers %s. There's potential data loss."
                .format(topicAndPartition, newLeader, liveAssignedReplicas.mkString(",")))
              new LeaderAndIsr(newLeader, currentLeaderEpoch + 1, List(newLeader), currentLeaderIsrZkPathVersion + 1)
            }
          } else { //note: 当前 isr 中还有副本存活
            val liveReplicasInIsr = liveAssignedReplicas.filter(r => liveBrokersInIsr.contains(r))
            val newLeader = liveReplicasInIsr.head //note: 第一个作为 leader
            debug("Some broker in ISR is alive for %s. Select %d from ISR %s to be the leader."
              .format(topicAndPartition, newLeader, liveBrokersInIsr.mkString(",")))
            new LeaderAndIsr(newLeader, currentLeaderEpoch + 1, liveBrokersInIsr.toList, currentLeaderIsrZkPathVersion + 1)
          }
        info("Selected new leader and ISR %s for offline partition %s".format(newLeaderAndIsr.toString(), topicAndPartition))
        (newLeaderAndIsr, liveAssignedReplicas)
      case None =>
        throw new NoReplicaOnlineException("Partition %s doesn't have replicas assigned to it".format(topicAndPartition))
    }
  }
}

ReassignedPartitionLeaderSelector
ReassignedPartitionLeaderSelector 是在 Partition 副本迁移后,副本同步完成(RAR 都处在 isr 中,RAR 指的是该 Partition 新分配的副本)后触发的,其 leader 选举逻辑如下:

  1. leader 选择存活的 RAR 中的第一个副本,此时 RAR 都在 isr 中了;
  2. new isr 是所有存活的 RAR 副本列表;
//note: 重新分配分区时,partition 的 leader 选举策略
//note: new leader = 新分配并且在 isr 中的一个副本
//note: new isr = 当前的 isr
//note: 接收 LeaderAndIsr request 的副本 = reassigned replicas
class ReassignedPartitionLeaderSelector(controllerContext: ControllerContext) extends PartitionLeaderSelector with Logging {
  this.logIdent = "[ReassignedPartitionLeaderSelector]: "

  /**
   * The reassigned replicas are already in the ISR when selectLeader is called.
   */
  //note: 当这个方法被调用时,要求新分配的副本已经在 isr 中了
  def selectLeader(topicAndPartition: TopicAndPartition, currentLeaderAndIsr: LeaderAndIsr): (LeaderAndIsr, Seq[Int]) = {
    //note: 新分配的 replica 列表
    val reassignedInSyncReplicas = controllerContext.partitionsBeingReassigned(topicAndPartition).newReplicas
    val currentLeaderEpoch = currentLeaderAndIsr.leaderEpoch
    //note: 当前的 zk version
    val currentLeaderIsrZkPathVersion = currentLeaderAndIsr.zkVersion
    //note: 新分配的 replica 列表,并且其 broker 存活、且在 isr 中
    val aliveReassignedInSyncReplicas = reassignedInSyncReplicas.filter(r => controllerContext.liveBrokerIds.contains(r) &&
                                                                             currentLeaderAndIsr.isr.contains(r))
    //note: 选择第一个作为新的 leader
    val newLeaderOpt = aliveReassignedInSyncReplicas.headOption
    newLeaderOpt match {
      case Some(newLeader) => (new LeaderAndIsr(newLeader, currentLeaderEpoch + 1, currentLeaderAndIsr.isr,
        currentLeaderIsrZkPathVersion + 1), reassignedInSyncReplicas)
      case None =>
        reassignedInSyncReplicas.size match {
          case 0 =>
            throw new NoReplicaOnlineException("List of reassigned replicas for partition " +
              " %s is empty. Current leader and ISR: [%s]".format(topicAndPartition, currentLeaderAndIsr))
          case _ =>
            throw new NoReplicaOnlineException("None of the reassigned replicas for partition " +
              "%s are in-sync with the leader. Current leader and ISR: [%s]".format(topicAndPartition, currentLeaderAndIsr))
        }
    }
  }
}

PreferredReplicaPartitionLeaderSelector
PreferredReplicaPartitionLeaderSelector 是最优 leader 选举,选择 AR(assign replica)中的第一个副本作为 leader,前提是该 replica 在是存活的、并且在 isr 中,否则会抛出 StateChangeFailedException 的异常。

//note: 最优的 leader 选举策略(主要用于自动 leader 均衡,选择 AR 中第一个为 leader,前提是它在 isr 中,这样整个集群的 leader 是均衡的,否则抛出异常)
//note: new leader = 第一个 replica(alive and in isr)
//note: new isr = 当前 isr
//note: 接收 LeaderAndIsr request 的 replica = AR
class PreferredReplicaPartitionLeaderSelector(controllerContext: ControllerContext) extends PartitionLeaderSelector
with Logging {
  this.logIdent = "[PreferredReplicaPartitionLeaderSelector]: "

  def selectLeader(topicAndPartition: TopicAndPartition, currentLeaderAndIsr: LeaderAndIsr): (LeaderAndIsr, Seq[Int]) = {
    //note: Partition 的 AR
    val assignedReplicas = controllerContext.partitionReplicaAssignment(topicAndPartition)
    //note: preferredReplica,第一个 replica
    val preferredReplica = assignedReplicas.head
    // check if preferred replica is the current leader
    //note: 当前的 leader
    val currentLeader = controllerContext.partitionLeadershipInfo(topicAndPartition).leaderAndIsr.leader
    if (currentLeader == preferredReplica) {
      throw new LeaderElectionNotNeededException("Preferred replica %d is already the current leader for partition %s"
                                                   .format(preferredReplica, topicAndPartition))
    } else { //note: 当前 leader 不是 preferredReplica 的情况
      info("Current leader %d for partition %s is not the preferred replica.".format(currentLeader, topicAndPartition) +
        " Triggering preferred replica leader election")
      // check if preferred replica is not the current leader and is alive and in the isr
      //note: preferredReplica 是 alive 并且在 isr 中
      if (controllerContext.liveBrokerIds.contains(preferredReplica) && currentLeaderAndIsr.isr.contains(preferredReplica)) {
        (new LeaderAndIsr(preferredReplica, currentLeaderAndIsr.leaderEpoch + 1, currentLeaderAndIsr.isr,
          currentLeaderAndIsr.zkVersion + 1), assignedReplicas)
      } else {
        throw new StateChangeFailedException("Preferred replica %d for partition ".format(preferredReplica) +
          "%s is either not alive or not in the isr. Current leader and ISR: [%s]".format(topicAndPartition, currentLeaderAndIsr))
      }
    }
  }
}

ControlledShutdownLeaderSelector
ControlledShutdownLeaderSelector 是在处理 broker 下线时调用的 leader 选举方法,它会选举 isr 中第一个没有正在关闭的 replica 作为 leader,否则抛出 StateChangeFailedException 异常。

//note: Broker 掉线时,重新选举 leader 调用的 leader 选举方法
//note: new leader = 在 isr 中,并且没有正在 shutdown 的 replica
//note: new isr = 当前 isr 除去关闭的 replica
//note: 接收 LeaderAndIsr request 的 replica = 存活的 AR
class ControlledShutdownLeaderSelector(controllerContext: ControllerContext)
        extends PartitionLeaderSelector
        with Logging {

  this.logIdent = "[ControlledShutdownLeaderSelector]: "

  def selectLeader(topicAndPartition: TopicAndPartition, currentLeaderAndIsr: LeaderAndIsr): (LeaderAndIsr, Seq[Int]) = {
    val currentLeaderEpoch = currentLeaderAndIsr.leaderEpoch
    val currentLeaderIsrZkPathVersion = currentLeaderAndIsr.zkVersion

    val currentLeader = currentLeaderAndIsr.leader

    val assignedReplicas = controllerContext.partitionReplicaAssignment(topicAndPartition)
    val liveOrShuttingDownBrokerIds = controllerContext.liveOrShuttingDownBrokerIds
    //note: 存活的 AR
    val liveAssignedReplicas = assignedReplicas.filter(r => liveOrShuttingDownBrokerIds.contains(r))

    //note: 从当前 isr 中过滤掉正在 shutdown 的 broker
    val newIsr = currentLeaderAndIsr.isr.filter(brokerId => !controllerContext.shuttingDownBrokerIds.contains(brokerId))
    liveAssignedReplicas.find(newIsr.contains) match { //note: find 方法返回的是第一满足条件的元素,AR 中第一个在 newIsr 集合中的元素被选为 leader
      case Some(newLeader) =>
        debug("Partition %s : current leader = %d, new leader = %d".format(topicAndPartition, currentLeader, newLeader))
        (LeaderAndIsr(newLeader, currentLeaderEpoch + 1, newIsr, currentLeaderIsrZkPathVersion + 1), liveAssignedReplicas)
      case None =>
        throw new StateChangeFailedException(("No other replicas in ISR %s for %s besides" +
          " shutting down brokers %s").format(currentLeaderAndIsr.isr.mkString(","), topicAndPartition, controllerContext.shuttingDownBrokerIds.mkString(",")))
    }
  }
}

你可能感兴趣的:(Kafka 源码解析之 Controller 选举及服务启动流程)