Numpy使用


layout: post
title: Numpy使用
categories: Python
description: Numpy使用
keywords: Numpy
url: https://lichao890427.github.io/ https://github.com/lichao890427/


Python NumPy使用

基本用法

  NumPy是python的多维数组运算库,NumPy中维度数称为rank,维度称为axe,如[1,2,3]是一维数组。NumPy数组类为ndarray,它的重要属性有:
ndarray.ndim 维度数
ndarray.shape 维度(n,m)
ndarray.size 元素数
ndarray.dtype 元素类型
ndarray.itemsize 元素大小
ndarray.data 原始数据

import numpy as np
a = np.arange(15).reshape(3, 5)
>>> a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.itemsize
8
>>> a.size
15
>>> type(a)

>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)

创建数组

a = np.array([2,3,4])
b = np.array([(1.5,2,3), (4,5,6)])
>>> np.zeros( (3,4) )
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])
>>> np.ones( (2,3,4), dtype=np.int16 )                # dtype can also be specified
array([[[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]],
       [[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) )                                 # uninitialized, output may vary
array([[  3.73603959e-262,   6.02658058e-154,   6.55490914e-260],
       [  5.30498948e-313,   3.14673309e-307,   1.00000000e+000]])
>>> np.arange( 10, 30, 5 )
array([10, 15, 20, 25])
>>> np.arange( 0, 2, 0.3 )                 # it accepts float arguments
array([ 0. ,  0.3,  0.6,  0.9,  1.2,  1.5,  1.8])
>>> from numpy import pi
>>> np.linspace( 0, 2, 9 )                 # 9 numbers from 0 to 2
array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ])
>>> x = np.linspace( 0, 2*pi, 100 )        # useful to evaluate function at lots of points
>>> f = np.sin(x)

基本操作

a = np.array( [20,30,40,50] )
b = np.arange( 4 ) # array([0, 1, 2, 3])
c = a - b # array([20, 29, 38, 47])
b**2 # 乘方 array([0, 1, 4, 9])
10*np.sin(a) # array([ 9.12945251, -9.88031624,  7.4511316 , -2.62374854])
a<35 # array([ True, True, False, False], dtype=bool)

矩阵乘法使用dot函数完成

>>> A = np.array( [[1,1],
...             [0,1]] )
>>> B = np.array( [[2,0],
...             [3,4]] )
>>> A*B                         # elementwise product
array([[2, 0],
       [0, 4]])
>>> A.dot(B)                    # matrix product
array([[5, 4],
       [3, 4]])
>>> np.dot(A, B)                # another matrix product
array([[5, 4],
       [3, 4]])

非数组操作提供在ndarray类中

>>> a = np.random.random((2,3))
>>> a
array([[ 0.18626021,  0.34556073,  0.39676747],
       [ 0.53881673,  0.41919451,  0.6852195 ]])
>>> a.sum()
2.5718191614547998
>>> a.min()
0.1862602113776709
>>> a.max()
0.6852195003967595

通用函数如sin cos ex

>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([ 1.        ,  2.71828183,  7.3890561 ])
>>> np.sqrt(B)
array([ 0.        ,  1.        ,  1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2.,  0.,  6.])

你可能感兴趣的:(Numpy使用)