【万字综述】Molecular Cancer: 免疫微环境与ICIs治疗EGFR突变NSCLC疗效的关系

【万字综述】Molecular Cancer: 免疫微环境与ICIs治疗EGFR突变NSCLC疗效的关系_第1张图片

2019年9月16日,南方医科大学张健教授团队在Molecular Cancer杂志(IF=10.679)上发表了一篇关于在NSCLC患者中EGFR突变与ICI治疗的机制研究的综述。EGFR突变的NSCLC患者中NSCLC患者对PD-L1轴抑制剂的疗效存在差异的具体机制尚未完全明确,可能涉及多方面因素,例如EGFR-TKIs或EGFR突变影响肿瘤微环境免疫状态。本综述旨在阐述EGFR突变与PD-L1轴抑制剂疗效影响的可能机制,为临床决策提供有价值信息。

Role of the dynamic tumor microenvironment in controversies regarding immune checkpoint inhibitors for the treatment of non-small cell lung cancer (NSCLC) with EGFR mutations

DOI: 10.1186/s12943-019-1062-7


Section

1.全文摘要 (Abstract)
2.背景介绍 (Introduction)
3.PD-1/PD-1L抑制剂治疗EGFR突变NSCLC疗效差异的潜在机制


3.1 EGFR突变影响NSCLC中TME
3.1.1 EGFR突变和调节性T细胞 (Tregs)
3.1.2 EGFR突变和肿瘤浸润淋巴细胞 (TILs)
3.1.3 EGFR突变和外泌体 (Exosomes)
3.1.4 膜性免疫调节分子和免疫抑制可溶性因子
3.1.4.1 EGFR突变和CD73
3.1.4.2 EGFR突变和主要组织相容性复合物 (MHC)
3.1.5 EGFR基因突变位点和免疫检查点抑制剂的有效性
3.1.6 EGFR突变和肿瘤突变负荷(TMB)
3.1.7 EGFR突变和PD-L1表达
3.1.8 T790M突变状态和免疫检查点抑制剂的有效性


4. EGFR-TKIs的免疫调节作用

4.1 EGFR-TKIs的免疫调节作用4.2 EGFR-TKIs引起PD-L1表达的动态变化

5. 前景 (Future prospects)

6. 结论 (Conclusion)


  1. 全文摘要
    免疫治疗已成为非小细胞肺癌 (non-small cell lung cancer, NSCLC)的一线和二线治疗手段之一。适应性免疫信号传导和致癌基因驱动(如EGFR突变)信号传导可能参与调控NSCLC中PD-L1的表达。然而,免疫检查点抑制剂(ICIs)在晚期EGFR突变NSCLC的疗效反应的诸多研究结果存在矛盾。ICIs应答效应往往持久,甚至数年之后仍可有效。然而,仅小部分研究和临床研究显示EGFR突变NSCLC患者从ICIs治疗中获益。因此,EGFR突变的NSCLC患者中NSCLC患者对PD-L1轴抑制剂的疗效存在差异的具体机制尚未完全明确,可能涉及多方面因素,例如EGFR-TKIs或EGFR突变影响肿瘤微环境免疫状态。因此,更好地理解EGFR突变NSCLC患者与接收PD-L1轴抑制剂疗效之间的关系成为一个紧迫的主题。这些机制可能包括,如动态变化的肿瘤免疫微环境,动态表达的PD-L1,低肿瘤突变负荷,可能解释了EGFR突变与PD-L1轴抑制剂疗效之间的关系。为此,本文将阐述EGFR突变与PD-L1轴抑制剂疗效影响的可能机制,为临床决策提供有价值信息。

2. 背景介绍
肺癌是全球最常见的恶性肿瘤以及首位的癌症死亡原因,发病率和致死率分别可达11.6%和18.4%,根据世界癌症研究机构(IARC)的数据统计,至今全球约有210万名肺癌患者。2018年,全球肺癌新发病例约2,093,876例,死亡病例约1,761,007例,其中80%为NSCLC,由于早期不具备明显的临床症状,患者发现时已经错过最佳治疗时期,约75%的NSCLC确诊时属中晚期,致使其5年生存率不足15%。

下一代测序技术(next-generation sequencing, NGS),高通量基因组分析平台及基因工程小鼠模型(Genetically engineered mouse model,GEMM) 的应运而生,使得NSCLC的治疗逐步进入基于分子标志物的个体化治疗时代。鉴定出肺癌的驱动基因如KRAS和BRAF突变后,在肺腺癌患者中发现了EGFR突变,靶向EGFR的酪氨酸激酶抑制剂(tyrosine kinase inhibitors,TKIs)的出现为改善EGFR突变NSCLC的治疗点燃希望。近年来,EGFR-TKIs已被临床指南推荐作为EGFR基因敏感突变并且不存在耐药基因的晚期NSCLC患者一线治疗药物。与化疗相比,EGFR-TKIs显示出更为优越的客观缓解率(objective response rate, ORR) (67.0% vs 40.8%)和中位无疾病进展时间(progression free survival, PFS) (10.9 vs. 7.4个月)等生存获益。然而,EGFR-TKIs可诱导晚期EGFR突变NSCLC的快速应答,但通常在9-14个月发生获得性耐药现象。对于EGFR-TKIs耐药后的治疗策略,仍是亟待解决的问题,这些都促使人们开始关注免疫治疗带来的潜在获益。最近,重新激活肿瘤特异性T细胞这一免疫治疗策略在NSCLC治疗领域中取得突破性进展。ICIs可以改善肿瘤患者免疫状态,可使疾病得到持续控制。ICIs如检查点程序死亡受体 (programmed death-1,PD-1)及其配体 (PD-1 ligand,PD-L1)正在成为晚期NSCLC的另一全新突破性治疗方式。例如,迄今最长的一项随访研究表明129名多次治疗失败的晚期NSCLC患者接受Nivolumab治疗后5年生存率为达26%,[其发生频率远高于非免疫治疗的NSCLC5年生存率(1%-8%)]。此外,临床前研究表明,EGFR突变信号可以上调肿瘤细胞上PD-L1表达,从而诱导T细胞凋亡并参与EGFR突变型NSCLC的免疫逃逸。此外,EGFR-TKIs可增强主要组织相容性复合体(major histocompatibility complex, MHC)-I和MHC-II的表达 ,以响应γ-干扰素(interferon-γ, IFN-γ)并增强T细胞介导的肿瘤杀伤作用,这为支持PD-1/PD-L1抑制剂与EGFR-TKIs联合治疗携带EGFR突变的NSCLC患者可能产生协同作用提供了理论基础。因此,这些是否意味着免疫治疗联合靶向治疗能提高疗效并使更多EGFR突变NSCLC患者获益。

近期多项相关研究正不断开展,探索EGFR突变患者接受免疫治疗联合靶向治疗的疗效及安全性。最近,多项临床试验显示EGFR突变患者无法从免疫治疗中获益,甚至疗效更差,并且有可能导致爆发“超进展”(hyperprogressive,HPD),增大毒副作用的叠加。一项开放的III期CAURAL试验(NCT02454933)研究了Osimertinib联合Durvalumab与Osimertinib单药治疗EGFR-TKI治疗后EGFR T790M突变阳性的晚期NSCLC患者的疗效和安全性差异,结果显示联合用药组在ORR(64% vs 80%)、中位DOR(17.5 vs 21.4个月)和DCR(100% vs 93%)上无法从联合治疗中获益,甚至低于Osimertinib单药治疗组。在另一项Ib期TATTON研究评估了Osimertinib联合Durvalumab 治疗EGFR突变NSCLC的疗效。该研究将患者分为经治组(剂量扩增疗法)和EGFR-TKI初治组(剂量探索疗法),结果显示EGFR-TKI经治T790M阳性患者和EGFR-TKI经治T790M阴性患者ORR分别为67%和21%,TKI初治患者ORR为70%。尽管该试验联合治疗有效率尚可,然而患者耐受性欠佳,尤其是间质性肺炎 (Interstitial lung Disease, ILD)的风险却显著升高。此外,一项开放、多中心的临床I/II期研究Keynote-021试验中,在使用Pembrolizumab联合Erlotinib一线治疗EGFR突变晚期NSCLC患者中,患者从ORR(41.7%)和中位PFS(19.5个月)均显著获益,其中位PFS明显优于第1代EGFR-TKIs单药的一线治疗(11.0个月),甚至优于Osimertinib单药一线治疗(19.17个月)。另一项I期CheckMate012试验试图比较Nivolumab联合Erlotinib二线治疗EGFR突变晚期NSCLC患者的临床疗效。结果显示,20例经治患者的ORR为15%,DCR为65%。中位PFS为5.1个月,中位OS为18.7个月。截止2017年12月1日,所有存活的8例(8/21,38.1%)患者生存期都达到5年以上。因此,多项基础研究与临床研究结果存在矛盾(表1),PD-1/PD-L1抑制剂和EGFR-TKIs的联合应用备受争议。

近几年,临床前与临床研究均纷纷探索EGFR突变NSCLC患者免疫检查点治疗疗效 存在矛盾的可能机制。越来越多的研究发现ICIs的治疗效果与肿瘤免疫微环境(如T细胞亚群)、肿瘤免疫原性、特定基因的突变、拷贝数变异和肠道微生物丰度等因素有关。多项研究提示EGFR突变可能与抑制性免疫微环境、肿瘤突变负荷(tumor mutation burden, TMB)和PD-L1表达等相关。此外,EGFR-TKIs可能参与调节肿瘤免疫微环境。以上因素作为空间和时间上连续变量,它们之间的确切界值及相关性依旧尚未明确。上述研究结果可能作为初治或经治的EGFR突变NSCLC患者对免疫检查点抑制剂或EGFR-TKIs联合治疗的疗效存在矛盾的可能机制。

【万字综述】Molecular Cancer: 免疫微环境与ICIs治疗EGFR突变NSCLC疗效的关系_第2张图片

为此,我们试图比较和分析有关EGFR突变NSCLC患者对PD-1/PD-L1抑制剂或与EGFR-TKIs联合治疗的所有临床研究及临床前研究,探索使用PD-1/PD-L1抑制剂或与EGFR-TKI联合治疗EGFR突变NSCLC患者的可行性。本文探索了EGFR突变NSCLC患者的肿瘤免疫微环境,分析免疫治疗或联合靶向治疗的疗效相互矛盾的可能机制,并深入讨论如何提高EGFR突变NSCLC患者免疫治疗效果。有望为EGFR突变NSCLC患者发现和鉴定免疫治疗的生物标志物和治疗带来新的希望。

3. PD-1/PD-1L抑制剂治疗EGFR突变NSCLC疗效差异的潜在机制

3.1 EGFR突变影响NSCLC中TME

TME是肿瘤细胞赖以生存和发展的内环境。肿瘤免疫微环境对于制定肿瘤免疫治疗策略至关重要,而T淋巴细胞、髓源性细胞、细胞因子、外泌体构成了肿瘤微环境的免疫调节网络。随着肿瘤发展和免疫细胞的可塑性(plasticity),T淋巴细胞通过免疫编辑从免疫监视转化为免疫逃逸,甚至发挥免疫抑制功能,如诱导调节性T细胞(regulatory T cell, Tregs)、上调髓源性抑制细胞(myeloid-derived suppressor cells, MDSC)。此外,TME中炎性细胞也可能作为介导肿瘤进展的重要机制。

最近多项研究显示EGFR突变的抑制性免疫作用,EGFR突变可调节肿瘤免疫微环境,如肿瘤浸润淋巴细胞(TILs),Tregs,MDSCs, 肿瘤相关的巨噬细胞(tumor-associated macrophages, TAMs) ,免疫相关的细胞因子和外泌体。这些临床前和临床研究结果提示EGFR突变NSCLC患者的肿瘤微环境免疫状态可能是独特并且不同于EGFR野生型患者。此外,EGFR突变可能通过影响TME来影响抗肿瘤效应 (图1)。

【万字综述】Molecular Cancer: 免疫微环境与ICIs治疗EGFR突变NSCLC疗效的关系_第3张图片

3.1.1 EGFR突变和调节性T细胞 (Tregs)

Tregs是一类抑制免疫反应性Th细胞亚群,其核心转录因子为Foxp3是功能性Treg的特异性标志。肿瘤内的Treg细胞分泌的转化生长因子-β(transforming growth factor-β, TGF-β)和白介素-10 (interleukin-10, IL-10)和IL-35能产生一个免疫抑制环境,有助于减弱CD4+ T细胞、CD8+ T细胞及NK细胞产生的抗肿瘤效应。

Huang等研究表明,EGFR(+)外泌体诱导耐受型DC细胞的可塑性转变,诱导DC细胞生成免疫耐受分子吲哚胺-2,3-双加氧酶(indoleamine2,3-dioxygenase, IDO),IDO在CD3+ CD4+ CD25- T细胞转换为Treg细胞中发挥重要的作用,进而诱导免疫耐受和肿瘤免疫逃避。此外,研究表明双调蛋白(Amphiregulin,AREG)为EGFR配体之一,其在NSCLC患者血浆的表达水平与患者预后不良相关,并且作为肿瘤细胞中的外泌体中的特定分子在肿瘤增殖与存活中起促癌作用。Wang等研究发现,糖原合酶激酶-3β(glycogen synthase kinase 3β,GSK-3β)可直接或通过β-连环蛋白(β-catenin)和白细胞淋巴瘤/白血病xL(Bcl-xL)的表达间接下调Foxp3蛋白的表达,进而抑制Treg细胞功能。而在多种肿瘤细胞中表达均上调的双调蛋白(Amphiregulin, AREG),可通过与Treg细胞上表达的EGFR结合激活EGFR信号抑制GSK-3β蛋白的活性,促进Foxp3蛋白翻译后的修饰过程,减少Foxp3蛋白降解以增强Foxp3蛋白表达,进而维持Treg细胞的抑制功能。而使用EGFR-TKI吉非替尼可以修复GSK-3β活性和减弱Treg细胞免疫抑制功能。此外,Mascia等研究表明敲除EGFR基因后可以明显抑制肿瘤细胞的生长和下调TME中Treg细胞的浸润程度。

3.1.2 EGFR突变和肿瘤浸润淋巴细胞 (TILs)

TIL是一类肿瘤浸润性且具有抗原效应的细胞群,可存在于肿瘤癌巢内和肿瘤间质中。CD8+ T细胞在肿瘤微环境肿瘤发展过程中是一种抗肿瘤免疫细胞,通过释放IFN-γ、穿孔素(perforin)和颗粒酶B(Granzyme B)等肿瘤毒性细胞因子达到杀死肿瘤细胞的作用,并且其数量决定其杀伤靶细胞的效率。多项研究表明NSCLC肿瘤微环境中高度浸润的CD8+ TIL与良好预后和治疗效果相关。Teng等通过建立肿瘤免疫微环境模型来预测免疫疗法的功效,对于肿瘤免疫微环境中TIL的存在或缺失和PD-L1表达的阳性或阴性来区分相应类型,结果显示免疫炎症型TME(PD-L1+ 和TIL+ )的患者从 PD-1/PD-L1抑制剂中获益的可能性最大。

Dong等发现EGFR突变型患者CD8+ TIL在肿瘤内的密度显著低于EGFR野生型患者(P=0.031),此外,与EGFR野生组相比EGFR突变组双阴性(PD-L1-/ TIL-)比例显著高于双阳性(PD-L1+ /TIL+ )比例(Odd Ratio (OR): 1.79, 95% CI: 1.10–2.93; P = 0.02); 同样,与双阴性(PD-L1-/ TIL-)组相比双阳性(PD-L1+ /TIL+ )组具有更低水平的EGFR突变(P=0.005)。多重免疫荧光组织化学标记方法表明,通过鉴定Ki67(T细胞增殖状态)、颗粒酶B和CD3+ 等表达以进一步预测TILs的功能。Toki等通过使用Schalper建立的预测模型来探索EGFR突变与TILs功能相关性,结果表明EGFR突变组中28.6%(16/56)TILs表现为衰竭或休眠的免疫状态(高CD3,低Ki67,低颗粒酶B);通过检测肿瘤细胞和基质细胞的PD-L1的表达状态和TILs功能后发现:无论是高表达PD-L1的肿瘤细胞或基质细胞均与活化TILs的高浸润显著相关(P= 0.0014 和 P=0.02)。此外,他们发现不同EGFR突变位点的免疫谱存在一定差异:与EGFR-19外显子缺失(EGFR-19Del)相比,EGFR-L858R型具有炎症型的肿瘤微环境,如高表达CD8+ T细胞 (P=0.03)和高表达的趋势CD3+ 和CD4+ (P= 0.11;P= 0.11);相比,EGFR-L858R组较EGFR-19Del组具有高浸润的活化TILs,然而EGFR-L858R和EGFR-19Del在肿瘤细胞和基质细胞中PD-L1的表达并无统计学差异。

3.1.3 EGFR突变和外泌体 (Exosomes)

外泌体(Exosomes)是细胞分泌的微小膜囊泡,包含许多分子,如核酸(DNA,RNA,mRNA 和 miRNA) 、脂类和蛋白质。它作为信号载体介导细胞间通讯,并通过协同作用影响肿瘤细胞对药物的敏感性,与肿瘤转移的发生相关。肿瘤细胞来源的外泌体可以通过其内含 miRNA 影响远处靶细胞,改变局部微环境,形成“预转移龛” 发挥远程调控功能。Poggio等证明肿瘤细胞分泌带有PD-L1的外泌体导致免疫逃逸,通过与T细胞直接结合并抑制T细胞的功能,此外,外泌体PD-L1能够抑制淋巴结中T细胞的活性。研究者进一步研究发现外泌体的PD-L1对PD-L1抑制剂具有抵抗作用,通过使用CRISPR基因编辑技术敲除产生外泌体的相关基因后,外泌体缺陷肿瘤细胞能够引起系统性抗肿瘤免疫和免疫记忆,对免疫治疗后有着显著的疗效。此外,在抑制外泌体形成和PD-1/PD-L1抑制剂的联合治疗下,小鼠的生存时间明显较单一PD-1/PD-L1抑制剂疗法显著延长。

3.1.4 膜性免疫调节分子和免疫抑制可溶性因子

TME中膜性免疫调节分子的表达的变化和免疫抑制可溶性因子(如TGF-β,IL-10和腺苷(ADO)等的释放在在肿瘤进展的过程中发挥至关重要的作用。

3.1.4.1 EGFR突变和CD73

CD73是胞外5'-核苷酸酶,由糖基磷脂酰肌醇(GPI)锚定于细胞膜外表面,CD73在多种肿瘤中呈现高表达状态。它不仅参与嘌呤核苷酸的代谢和补救合成途径,而且作为一种重要的免疫信号负向调控分子,通过催化免疫抑制性介质腺苷(ADO)的形成,参与肿瘤的免疫逃逸。研究表明高表达的CD73与免疫抑制及NSCLC患者的预后不良有关。因此,更好地理解CD73,ADO与TME的调控体系尤为重要 (图1)

Park等根据CD73表达水平[CD73高表达(CD73-H)和CD73低表达(CD73-L)]进行亚组分析,结果显示与CD73-L组相比,CD73-H组高密度浸润的活化CD4 + T细胞(20%vs 41%,P < 0.01)和CD8 + T细胞(28%vs 47%,P < 0.01)更少。与CD73-H组相比,CD73-L组的OS和DFS更高(62 vs 44个月,P < 0.01;83 vs 34个月,P < 0.01);此外,亚组分析提示EGFR突变与CD73的高表达有关(P = 0.03)。因此,Park等推测突变型EGFR NSCLC中CD73的过表达可能导致对免疫抑制疗法的不良反应,并提示CD73抑制剂与EGFR-TKIs或PD-1 / PD-L1抑制剂的组合可能是治疗耐药患者的潜在策略。相反,一项回顾性研究报道,在接受免疫疗法治疗的EGFR-TKI耐药组中,与CD73低表达相比,CD73过表达组中位PFS(16个月vs 1.2个月,P = 0.024)和ORR(66.7%vs 0 %,P = 0.006)显著增加,而野生型EGFR患者的高和低CD73表达组之间中位PFS和ORR没有差异(中位PFS:2.8个月vs 2.8个月,P = 0.394。但是,目前的共识表明,EGFR突变的肿瘤细胞可能通过上调CD73,将ATP转化为ADO,进而活化ADO旁路以上调Tregs表达,改变肿瘤细胞和免疫细胞的功能,从而产生免疫抑制型肿瘤免疫微环境。由于结果的不一致性,CD73表达与免疫抑制性TME相关的确切机制仍不清楚。

3.1.4.2 EGFR突变和主要组织相容性复合物 (MHC)

MHC对肿瘤抗原呈递过程中发挥重要作用:MHC I类分子肿瘤抗原可组成细胞激活的第一信号,激活CD8+ T细胞,发挥抗肿瘤免疫效应。MHC II类分子与肿瘤抗原肽结合后,提呈给CD4+ T细胞,激活特异性CD4+ T杀伤细胞和辅助细胞。前者可特异性地杀伤肿瘤细胞,后者可通过分泌细胞因子提高和杀伤细胞的杀伤效应,参与机体抗肿瘤的正反馈调节。多项研究表明,MHC分子表达与免疫治疗的疗效相关。IFN-γ可以上调细胞表面MHC-I的表达。Watanabe等研究发现EGFR突变肿瘤细胞在IFN-γ存在的情况下其HLA-B表达水平仍低于EGFR野生型NSCLC细胞。近年来,多项研究表明EGFR突变不仅通过IFNγ信号通路下调MHCI和MHCII的表达,也能通过抑制对MHCII类分子反式激活因子(classII transactivator, CIITA)的诱导,进一步抑制MHCI和MHCII的表达。Watanabe等发现EGFR突变通过活化下游MEK/ERK信号通路进而抑制MHC-I表达 (图2)

【万字综述】Molecular Cancer: 免疫微环境与ICIs治疗EGFR突变NSCLC疗效的关系_第4张图片

3.1.5 EGFR基因突变位点和免疫检查点抑制剂的有效性

EGFR基因突变主要发生在18-20号外显子,其中19号外显子缺失突变(p.E746-A750del)和21号外显子点突变(p.L858R)可占所有突变类型的85%以上,而这两者也是对EGFR-TKI有效有的最主要的两种敏感型突变。所有其他其他突变可称为罕见突变,如18号外显子的G719X突变(3%)和21号外显子的L861X突变(2%)是最常见罕见突变类型,G719X、L861X、19号外显子和20号外显子的嵌入突变也被认为对TKI治疗有效。多项研究表明EGFR罕见突变NSCLC患者较常见EGFR常见突变更能从免疫治疗中获益。

Yamada等对EGFR突变NSCLC按照罕见/常见突变位点(是否为19号外显子缺失突变和21号外显子L858点突变)进行亚组分析,结果表明EGFR罕见突变患者中位PFS(256天vs 50天,HR = 0.288 ;95% CI:0.13-0.63; P= 0.003)和中位疾病进展时间 (Time To Progress, TTP) (256天 vs 48天; HR =0.353; 95% CI:0.16‐0.77; P= 0.008)较EGFR常见突变患者得到显著延长。此外,最新CA209-003研究的5年生存者特征分析结果显示2例罕见EGFR突变患者(2/8,25%)生存期超过5年,突变位点分别为EGFR外显子20插入和外显子18错义突变G719A。此外,Yoshida等报道EGFR罕见突变患者较EGFR常见突变患者有着显著延长的PFS(P <0.05)。

3.1.6 EGFR突变和肿瘤突变负荷(TMB)

TMB是评估肿瘤基因的外显子编码区每兆碱基发生置换、插入、缺失突变的总数;它是免疫抑制剂疗效预测的良好生物标志,可定量估计肿瘤基因组编码区的突变总数,TMB越高,肿瘤产生的新抗原越多,越易被免疫细胞识别,对免疫治疗有较好的客观缓解率,较长的无进展生存期和持久的临床响应。

Haratani等为研究EGFR突变NSCLC患者耐药后使用Nivolumab治疗疗效与TMB之间的关系,全外显子组测序(whole exomesequencing,WES)结果显示每位患者(n=9)的中位TMB为101(Mut/Mb),且对药物有应答的患者(n=3)的TMB显著高于无反应患者(n=6)。此外,Dong等发现EGFR突变型(外显子19Del、L858R、L861Q、G719X、S768I)的中位TMB显著低于EGFR野生型TMB (56 vs 181 Mut/Mb); 此外,EGFR基因突变型与野生型的突变负荷中值比为突变负荷中位值分别为59:209 (Broad database)和162:197 (GLCI database)。

单个点突变如EGFR、BRAF和TP53突变通常是NSCLC早期克隆驱动事件,目前研究显示这类特定基因突变患者多数对免疫治疗反应不理想,而减少的TMB可能是EGFR突变对于免疫治疗疗效不佳的重要影响因素之一。目前关于EGFR突变与TMB的相关性研究还在进行中,而微卫星高度不稳定、错配修复基因缺失在免疫治疗中的作用也是未来研究中需要不断探索的部分。

3.1.7 EGFR突变和PD-L1表达

目前,EGFR突变与PD-L1表达调控仍然存在争议,但是体外实验及大中心研究均提示EGFR突变导致NSCLC中PD-L1表达异常升高。此外,近来有研究发现,Ras/RAF/MEK/ERK、PI3K/AKT/mTOR、JAK/STAT、NF-kB、GSK-3β等异常活化后可促进肿瘤细胞PD-L1表达(图2)。然而,近来多项临床研究得出相反结论,如PD-L1在EGFR野生型肺癌组织中高表达,EGFR突变和PD-L1表达呈负相关或无显著相关性。一项Meta分析显示EGFR野生型与突变型肿瘤PD-L1+ 表达率具有显著差异(44.1% vs 36.7%, P<0.05)。此外,另一项Meta分析得出相同结论,EGFR野生型肿瘤PD-L1+ 表达率明显高于EGFR突变型肿瘤(P=0.02)。为进一步证实,研究人员检测了NSCLC患者肿瘤样本的mRNA谱、PD-L1蛋白免疫组化(IHC)和反相蛋白阵列(reverse phase protein arrays, RPPA),发现EGFR突变型肿瘤PD-L1表达明显低于EGFR野生型(P<0.05)。

不同试验研究结果相互矛盾可能与以下因素,如PD-L1检测技术(如不同的检测抗体、检测平台以及不同设定阳性阈值)、患者肿瘤异质性、患者肿瘤组织来源不同(如细胞学标本、存档标本与新鲜标本、原发部位或转移灶等)和TIL上亦可检测出PD-L1表达有关。此外,Noguchi等发现TAM上PD-L1的表达在肿瘤免疫逃逸发挥着重要的作用。肿瘤细胞上PD-L1表达是由IFN-γ和致癌驱动基因的突变介导的依赖性和暂时性表达,但免疫细胞上的PD-L1的诱导幅度更大,仅部分依赖于IFN-γ,并且其表达在监测时间内相对稳定。因此,许多研究人员认为PD-L1在免疫细胞上的表达是预测PD-1 / PD-L1抑制剂功效的更好的生物标志物。

3.1.8 T790M突变状态和免疫检查点抑制剂的有效性

针对EGFR敏感突变NSCLC患者,Gefitinib、Erlotinib和Afatinib作为一线EGFR突变靶向药物显示出较好的响应,但通常在9-14个月后出现获得性耐药现象,其中EGFR T790M突变作为最常见的耐药机制,可在约50-60%患者中检测到。Haratani等分析了EGFR-TKI治疗期间疾病进展后用Nnivolumab治疗的患者,结果显示,EGFR突变患者T790M(+)组和T790M(-)组患者的CD8+ TILs数量相似,但T790M(-)组PD-L1水平≥10%或≥50%的肿瘤细胞比例(20%vs 4%)和高密度浸润的CD8+ TIL(≥median) (12%vs 4%)共存现象多于T790M(+)组,T790M(-)组患者的FOXP3+ TILs计数显著低于T790M(+)组(P = 0.013)。Yamada等回顾性研究纳入27例EGFR-TKI耐药后使用ICIs治疗的患者,亚组分析表明T790M(-)患者较T790M(+)更能从PD-1抑制剂治疗中获益(中位PFS: 86天 vs 48天; P=0.03; 中位TTP:97天 vs 48天; P=0.03)。在对67例EGFR突变NSCLC患者分析结果显示T790M(+)肿瘤细胞中PD-L1表达明显低于T790M(-)肿瘤细胞 (P=0.0149)。

4.EGFR-TKIs的免疫调节作用

4.1 EGFR-TKIs影响NSCLC中TME

截至目前大多数基础研究和临床研究均表明EGFR-TKI通过以下途径,如EGFR-TKI可增强主要组织相容性复合体(major histocompatibility complex, MHC)-I和MHC-II的表达,提高免疫提呈作用;促使Foxp3降解来减弱Treg细胞的抑制功能;通过降低肿瘤微环境中Treg细胞浸润4并抑制肿瘤生长和增强细胞毒性T淋巴细胞(cytotoxic lymphocyte,CTL)介导的的抗肿瘤活性,减少T细胞凋亡,增加IFN-γ产生优化机体抗肿瘤活性,从而增强患者PD-1/PD-L1抑制剂获益几率。然而,这些机制却依旧无法完全解释EGFR突变患者使用免疫检查点抑制剂和EGFR-TKI的联合治疗方式疗效存在争议的原因。

最近,Jia等对在小鼠肺肿瘤模型(EGFRL858R or EGFR19DEL/T790M)中对使用EGFR-TKI后对小鼠的肿瘤免疫微环境的不同时期进行分析,结果显示EGFR-TKI治疗过程中EGFR突变肿瘤的TME呈现动态变化从肿瘤有益性免疫微环境(早期阶段)转变为肿瘤免疫抑制性微环境(晚期阶段)(图1;表2)。在EGFR-TKI治疗的早期阶段短期抑制肿瘤细胞的生长,并增加CD8+ T细胞、DC细胞和M1-like TAMs数量,减少Foxp3+ Tregs浸润和抑制M1型TAMs向M2型TAMs极化;然而,EGFR-TKI治疗的后期阶段,抗肿瘤效应细胞无明显变化甚至减少,血清中IL-10和CCL-2分泌增加,CCL2作为趋化因子配体可通过与其受体CCR2结合,进一步募集MDSCs至TME。此外,其他研究也发现EGFR-TKI可以上调CCL-2的表达。CCL2诱导T细胞分化为Th2细胞(抗炎功能),上调并活化MDSCs的信号转导子和转录激活子-3(STAT3),STAT3进一步介导Mo-MDSC扩增及活化,MDSC进一步发挥抗肿瘤免疫抑制作用,如产生免疫抑制分子IL-10, TGF-β 抑制抗肿瘤免疫细胞(T细胞、DC细胞和NK细胞)功能、诱导T细胞凋亡、增加Tregs数量和促进TAM巨噬细胞向M2表型极化。除了抑制免疫应答之外,MDSC还可以通过非免疫相关的机制促进肿瘤的侵袭和转移,包括分泌VEGF促进肿瘤血管生成,直接分化成肿瘤血管内皮细胞,释放各种金属基质蛋白酶(matrix metalloproteinase, MMP)促进肿瘤侵袭等方式。此外,IL-10不仅介导DC细胞和immature myeloid cells (IMCs) 中能够通过STAT3途径介导MDSCs的扩增和活化,还可以通过下调肿瘤细胞表面的HLA class I 的表达。因此,Jia及其同事推测肿瘤免疫微环境在EGFR-TKIs治疗期间存在短暂的窗口期,这一短暂并且可能最终消失的窗口期对于EGFR-TKIs与免疫检查点抑制剂的联合治疗方案可能是最有益的。以上研究提示我们,在肿瘤治疗的不同阶段TME可能呈现动态变化,进一步了解肿瘤微环境的动态变化对改善免疫治疗联合靶向治疗的疗效至关重要。

4.2 EGFR-TKIs引起PD-L1表达的动态变化

多项研究结果显示EGFR突变NSCLC患者在使用TKI治疗前后PD-L1表达水平发生动态变化,部分呈现PD-L1表达显著增加,而部分患者PD-L1表达下降。部分患者呈现PD-L1表达显著增加可能解释了一些患者EGFR-TKIs耐药后二线免疫治疗疗效较好的部分原因。Gainor等研究报道了EGFR-TKI使用前后PD-L1的变化情况,显示TKI治疗前PD-L1表达≥1%、≥5%和≥50%的EGFR突变NSCLC患者分别占24%、16%和11%,而TKI治疗耐药后分别占31%、29%和14%。28%(16/57)EGFR突变NSCLC患者在TKI耐药后PD-L1表达水平发生动态改变,其中12例(12/57, 21%)表达上调,4例(4/57,7%)表达下调。此外,PD-L1+ (表达≥5%)与高CD8+ TILs浸润(≥2级)同时出现的在与EGFR突变NSCLC患者治疗前后增加,但无统计学差异(2.1%vs11.6%;P=0.219)。另一项研究发现EGFR突变型肺癌患者在靶向治疗耐药后,8例(8/17, 38.9%)NSCLC患者肿瘤细胞的PD-L1表达出现上调,并且肿瘤组织发生间质上皮转化(Mesenchyal Epithelial Transition, MET)有关(P=0.028)。然而,PD-L1表达与对EGFR-TKIs耐药之间的关系和机制尚未明确。

【万字综述】Molecular Cancer: 免疫微环境与ICIs治疗EGFR突变NSCLC疗效的关系_第5张图片

5. 前景

在EGFR突变NSCLC患者中联合应用EGFR-TKIs与免疫检查点抑制剂的治疗策略引起了人们的关注。多种联合治疗的研究结果相互矛盾,其单独或联合应用备受争议。值得注意的是,传统治疗手段(如化疗及靶向治疗)远不能满足EGFR突变NSCLC中的临床需求。一线EGFR-TKI治疗失败后,EGFR突变NSCLC患者治疗方案的选择至关重要。因此,新型治疗策略在NSCLC中的临床应用与探索之路仍任重道远。本文总结了EGFR-TKIs与免疫检查点抑制剂的治疗策略的潜在可能机制(图3)。

首先,II期临床研究(NCT0287994)结果表明不推荐将Pembrolizumab作为初治EGFR-TKIs且高表达PD-L1患者的一线治疗药物。

第二,对部分高表达PD-L1或EGFR罕见突变NSCLC患者而言,ICIs似乎是更有前景的治疗策略(可能由于肿瘤异质性或EGFR突变克隆)。

第三,肿瘤免疫微环境在EGFR-TKIs治疗期间存在短暂的窗口期,这一短暂并且可能最终消失的窗口期对于EGFR-TKIs与免疫检查点抑制剂的联合治疗方案可能是最有益的。

第四,高表达的PD-L1与对EGFR-TKIs耐药性之间可能存在关联,因此EGFR-TKIs可能不适合作为高表达PD-L1且未使用EGFR-TKI的一线治疗策略。

第五,血管内皮生长因子(vascular endothelial growth factor, VEGF) / VEGFR抑制剂与免疫检查点抑制剂的联合用药策略可能为EGFR-TKIs耐药的EGFR突变患者提供了新的选择。VEGF可促进免疫抑制性细胞的产生(如Tregs和MDSCs等)、限制DCs,抗原提呈细胞的成熟和效应T细胞的功能、阻碍肿瘤特异性T细胞和其他免疫效应细胞向肿瘤微环境的浸润和迁移,因此,VEGF抑制剂可通过拮抗上述多种途径增强机体的抗肿瘤免疫效应。然而,VEGF阻断和免疫调节作用的确切机制仍不清楚。一项随机,III期临床试验(IMpower150)结果显示,在EGFR突变NSCLC患者中,atezolizumab+贝伐珠单抗+标准化疗(TC)组与贝伐单抗+ TC组相比显示出了有希望的疗效(中位DOR:11.1个月vs 5.6个月)。

** 第六,**大多数EGFR突变晚期NSCLC患者同时具有多种致癌突变。

因此,推荐应用基因组诊断来进一步选择最合适的治疗策略。以上问题值得思考,例如:如何筛选不同的联合治疗策略的适宜人群、寻找预测联合治疗方案疗效的生物标志物等。

【万字综述】Molecular Cancer: 免疫微环境与ICIs治疗EGFR突变NSCLC疗效的关系_第6张图片

6. 结论

在全球,肺癌的确诊率、死亡率均占肿瘤的第一位,NSCLC占所有肺癌病例的85%以上,严重威胁着人们的健康。现今,免疫治疗成为NSCLC一个有前景的治疗策略。临床前研究表明EGFR突变通过PD-1/PD-L1途径介导肿瘤免疫逃逸,而EGFR-TKI下调肿瘤PD-L1表达。然而,EGFR突变NSCLC患者接受免疫检查点抑制剂治疗效果却不佳。但部分研究表明免疫检查点抑制剂对于EGFR突变患者的疗效仍然有效。本综述总结了EGFR突变NSCLC患者联合使用免疫治疗或联合EGFR-TKI治疗现状,EGFR突变基因可能造成抑制性免疫微环境、低TMB、动态表达PD-L1等免疫特征,EGFR-TKI使用过程期间机体肿瘤免疫微环境发生动态变化。这些矛盾和争议的出现均提示EGFR突变NSCLC患者免疫治疗或联合EGFR-TKI治疗尚处于早期阶段。因此,在这种情况下,如何在TME内诱导持久的抗肿瘤活性,如何最大限度地提高患者免疫治疗效果,研究人员和临床医生必须明确有效的疗效、毒性预测生物标志物、药物间的最佳剂量,最佳顺序和时间表。此外,仍需开展大量前瞻性实验探究何时将免疫疗法与靶向药物等其他疗法相结合,为EGFR突变患者寻找生存希望。


Reference:

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA:a cancer journal for clinicians 2018; 68: 394-424.
  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal A. Global cancer statistics, 2012. CA:a cancer journal for clinicians 2015; 65: 87-108.
  1. Torre LA, Siegel RL, Jemal A. Lung cancer statistics. In Lung cancer and personalized medicine 2016; (pp.1-19). Springer, Cham.
  1. Taylor MD, LaPar DJ, Isbell JM, Kozower BD, Lau CL, Jones DR. Marginal pulmonary function should not preclude lobectomy in selected patients with non–small cell lung cancer. The Journal of thoracic and cardiovascular surgery 2014; 147: 738-46.
  1. Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK. Non-small-cell lung cancers: a heterogeneous set of diseases. Nature Reviews Cancer. 2014; 14 :53
  1. Remon J, Hendriks LE, Cabrera C, Reguart N, Besse B. Immunotherapy for oncogenic-driven advanced non-small cell lung cancers:Is the time ripe for a change? Cancer treatment reviews 2018; 15.
  1. Hanna N, Johnson D, Temin S, Baker Jr S, Brahmer J, Ellis PM, Giaccone G, Hesketh PJ, Jaiyesimi I, Leighl NB, Riely GJ. Systemic therapy for stage IV non-small-cell lung cancer:American Society of Clinical Oncology clinical practice guideline update. Journal of Clinical Oncology 2017; 35: 3484-515.
  1. Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR, Cheney RT, Chirieac LR, D'Amico TA, Dilling TJ, Dobelbower MC. NCCN guidelines insights:non–small cell lung cancer, version 4.2016. Journal of the National Comprehensive Cancer Network 2016 1;14: 255-64.
  1. Wu YL, Saijo N, Thongprasert S, Yang JH, Han B, Margono B, Chewaskulyong B, Sunpaweravong P, Ohe Y, Ichinose Y, Yang JJ. Efficacy according to blind independent central review:post-hoc analyses from the phase III, randomized, multicenter, IPASS study of first-line gefitinib versus carboplatin/paclitaxel in Asian patients with EGFR mutation-positive advanced NSCLC. Lung Cancer 2017; 104: 119-25.
  1. Ohashi K, Maruvka YE, Michor F, Pao W. Epidermal growth factor receptor tyrosine kinase inhibitor–resistant disease. Journal of Clinical Oncology 2013; 31: 1070.
  1. Helena AY, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, Kris MG, Miller VA, Ladanyi M, Riely GJ. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clinical cancer research 2013; 19: 2240-7.
  1. Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, Shepherd FA, He Y, Akamatsu H, Theelen WS, Lee CK. Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer. New England Journal of Medicine 20176;376:629-40.
  1. Chen DS, Mellman I. Oncology meets immunology:the cancer-immunity cycle. Immunity 2013; 39: 1-0.
  1. Lee CK, Man J, Lord S, Cooper W, Links M, Gebski V, Herbst RS, Gralla RJ, Mok T, Yang JC. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non–small cell lung carcinoma:a systematic review and meta-analysis. JAMA oncology 2018; 4: 210-6.
  1. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D. Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. New England Journal of Medicine 2015; 373: 123-35.
  1. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. New England Journal of Medicine 2015; 373: 1627-39.
  1. Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010):a randomised controlled trial. The Lancet 2016; 387: 1540-50.
  1. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, Von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, Cortinovis DL. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK):a phase 3, open-label, multicentre randomised controlled trial. The Lancet 2017; 389: 255-65.
  1. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, Braiteh F. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR):a multicentre, open-label, phase 2 randomised controlled trial. The Lancet 2016; 387: 1837-46.
  1. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. New England Journal of Medicine 2016; 375: 1823-33.
  1. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, Felip E, van den Heuvel MM, Ciuleanu TE, Badin F, Ready N. First-line nivolumab in stage IV or recurrent non–small-cell lung cancer. New England Journal of Medicine 2017; 376: 2415-26.
  1. Bianco A, Malapelle U, Rocco D, Perrotta F, Mazzarella G. Targeting immune checkpoints in non small cell lung cancer. Current opinion in pharmacology 2018; 40: 46-50.
  1. William Jr WN, Lin HY, Lee JJ, Lippman SM, Roth JA, Kim ES. Revisiting stage IIIB and IV non-small cell lung cancer:analysis of the surveillance, epidemiology, and end results data. Chest 2009; 136: 701-9.
  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA:a cancer journal for clinicians 2016; 66: 7-30.
  1. Soo RA, Lim SM, Syn NL, Teng R, Soong R, Mok TS, Cho BC. Immune checkpoint inhibitors in epidermal growth factor receptor mutant non-small cell lung cancer:Current controversies and future directions. Lung Cancer 2018; 115: 12-20.
  1. Li X, Lian Z, Wang S, Xing L, Yu J. Interactions between EGFR and PD-1/PD-L1 pathway:implications for treatment of NSCLC. Cancer letters 2018; 418: 1-9.
  1. Yang JC, Shepherd FA, Kim DW, Lee GW, Lee JS, Chang GC, Lee SS, Wei YF, Lee YG, Laus G, Collins B. Osimertinib plus durvalumab versus osimertinib monotherapy in EGFR T790M-positive NSCLC following previous EGFR-TKI therapy:CAURAL brief report. Journal of Thoracic Oncology 2019.
  1. Yang JC, Gadgeel SM, Sequist LV, Wu CL, Papadimitrakopoulou VA, Su WC, Fiore J, Saraf S, Raftopoulos H, Patnaik A. Pembrolizumab in Combination With Erlotinib or Gefitinib as First-Line Therapy for Advanced NSCLC With Sensitizing EGFR Mutation. Journal of Thoracic Oncology 2019; 14: 553-9.
  1. Yi L, Fan J, Qian R, Luo P, Zhang J. Efficacy and safety of osimertinib in treating EGFR‐mutated advanced NSCLC:A meta‐analysis. International journal of cancer 2019.
  1. Antonia SJ, Brahmer JR, Gettinger S, Chow LQ, Juergens R, Shepherd FA, Laurie SA, Gerber DE, Goldman J, Shen Y, Harbison C. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with platinum-based doublet chemotherapy (PT-DC) in advanced non-small cell lung cancer (NSCLC):metastatic non-small cell lung cancer. International Journal of Radiation Oncology• Biology• Physics 2014; 90: S2.
  1. Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, Konieczny BT, Daugherty CZ, Koenig L, Yu K, Sica GL. Rescue of exhausted CD8 T cells by PD-1–targeted therapies is CD28-dependent. Science 2017; 355: 1423-7.
  1. Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA, Shayan G, Horne W, Moskovitz JM, Kolls JK, Sander C, Shuai Y. Interferon-γ drives Treg fragility to promote anti-tumor immunity. Cell 2017; 169: 1130-41.
  1. Tavazoie MF, Pollack I, Tanqueco R, Ostendorf BN, Reis BS, Gonsalves FC, Kurth I, Andreu-Agullo C, Derbyshire ML, Posada J, Takeda S. LXR/ApoE activation restricts innate immune suppression in cancer. Cell 2018; 172: 825-40.
  1. Gebhardt C, Sevko A, Jiang H, Lichtenberger R, Reith M, Tarnanidis K, Holland-Letz T, Umansky L, Beckhove P, Sucker A, Schadendorf D. Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab. Clinical cancer research 2015; 21: 5453-9.
  1. De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH, Budhu S, Ghosh A, Pink M, Tchaicha J, Douglas M. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature 2016;539: 443.
  1. Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, Woo G, Nguyen AV, Figueiredo CC, Foubert P, Schmid MC. PI3Kγ is a molecular switch that controls immune suppression. Nature 2016; 539 :437.
  1. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 2015; 348: 124-8.
  1. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. New England Journal of Medicine 2017; 377: 2500-1.
  1. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, Watkins TB. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016; 351:1463-9.
  1. Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X, Williams LJ. Loss of PTEN promotes resistance to T cell–mediated immunotherapy. Cancer discovery 2016; 6: 202-16.
  1. Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, Huynh TG, Zhao L, Fulton L, Schultz KR, Howe E. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non–small cell lung cancer:a retrospective analysis. Clinical cancer research 2016; 22: 4585-93.
  1. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nature Reviews Cancer 2019; 19: 133.
  1. Dong ZY, Zhang JT, Liu SY, Su J, Zhang C, Xie Z, Zhou Q, Tu HY, Xu CR, Yan LX, Li YF. EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer. Oncoimmunology 2017; 6:e1356145.
  1. Li HY, McSharry M, Bullock B, Nguyen TT, Kwak J, Poczobutt JM, Sippel TR, Heasley LE, Weiser-Evans MC, Clambey ET, Nemenoff RA. The tumor microenvironment regulates sensitivity of murine lung tumors to PD-1/PD-L1 antibody blockade. Cancer immunology research 2017; 5: 767-77.
  1. Mascia F, Schloemann DT, Cataisson C, McKinnon KM, Krymskaya L, Wolcott KM, Yuspa SH. Cell autonomous or systemic EGFR blockade alters the immune‐environment in squamous cell carcinomas. International journal of cancer 2016; 139: 2593-7.
  1. Saxon JA, Sherrill TP, Polosukhin VV, Sai J, Zaynagetdinov R, McLoed AG, Gulleman PM, Barham W, Cheng DS, Hunt RP, Gleaves LA. Epithelial NF-κB signaling promotes EGFR-driven lung carcinogenesis via macrophage recruitment. Oncoimmunology 2016; 5: e1168549.
  1. Jia Y, Li X, Jiang T, Zhao S, Zhao C, Zhang L, Liu X, Shi J, Qiao M, Luo J, Liu S. EGFR‐targeted therapy alters the tumor microenvironment in EGFR‐driven lung tumors: Implications for combination therapies. International journal of cancer 2019.
  1. Park LC, Rhee K, Kim WB, Cho A, Song J, Anker JF, Oh M, Bais P, Namburi S, Chuang J, Chae YK. Immunologic and clinical implications of CD73 expression in non-small cell lung cancer (NSCLC).
  1. Spigel DR, Schrock AB, Fabrizio D, Frampton GM, Sun J, He J, Gowen K, Johnson ML, Bauer TM, Kalemkerian GP, Raez LE. Total mutation burden (TMB) in lung cancer (LC) and relationship with response to PD-1/PD-L1 targeted therapies.
  1. Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, Mikse OR, Cherniack AD, Beauchamp EM, Pugh TJ, Wilkerson MD. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer discovery 2013; 3: 1355-63.
  1. Azuma K, Ota K, Kawahara A, Hattori S, Iwama E, Harada T, Matsumoto K, Takayama K, Takamori S, Kage M, Hoshino T. Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Annals of oncology 2014; 25: 1935-40.
  1. Zhang Y, Wang L, Li Y, Pan Y, Wang R, Hu H, Li H, Luo X, Ye T, Sun Y, Chen H. Protein expression of programmed death 1 ligand 1 and ligand 2 independently predict poor prognosis in surgically resected lung adenocarcinoma. OncoTargets and therapy 2014; 7:567.
  1. Yang CY, Lin MW, Chang YL, Wu CT, Yang PC. Programmed cell death-ligand 1 expression in surgically resected stage I pulmonary adenocarcinoma and its correlation with driver mutations and clinical outcomes. European journal of cancer 2014; 50: 1361-9.
  1. Camidge DR, Doebele RC, Kerr KM. Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nature Reviews Clinical Oncology 2019; 4:1.
  1. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nature Reviews Cancer 2009; 9:239.
  1. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nature medicine 2013;19: 1423.
  1. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting:integrating immunity’s roles in cancer suppression and promotion. Science 2011; 331: 1565-70.
  1. DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T. Expression of tumour-specific antigens underlies cancer immunoediting. Nature. 2012; 482:405.
  1. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004 ; 21: 137-48.
  1. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. Journal of cell science. 2012;125(Pt 23): 5591-6.
  1. Bruno A, Pagani A, Magnani E, Rossi T, Noonan DM, Cantelmo AR, Albini A. Inflammatory angiogenesis and the tumor microenvironment as targets for cancer therapy and prevention. In Advances in Nutrition and Cancer 2014 (pp. 401-426). Springer, Berlin, Heidelberg.
  1. Bruno A, Pagani A, Pulze L, Albini A, Dallaglio K, Noonan DM, Mortara L. Orchestration of angiogenesis by immune cells. Frontiers in oncology 2014; 4:131.
  1. Noonan DM, Barbaro AD, Vannini N, Mortara L, Albini A. Inflammation, inflammatory cells and angiogenesis:decisions and indecisions. Cancer and Metastasis Reviews 2008; 27:31-40.
  1. Bruno A, Ferlazzo G, Albini A, Noonan DM. A think tank of TINK/TANKs:tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis. Journal of the National Cancer Institute 2014; 106:1-3.
  1. Mazzaschi G, Madeddu D, Falco A, Bocchialini G, Goldoni M, Sogni F, Armani G, Lagrasta CA, Lorusso B, Mangiaracina C, Vilella R. Low PD-1 expression in cytotoxic CD8+ tumor-infiltrating lymphocytes confers an immune-privileged tissue microenvironment in NSCLC with a prognostic and predictive value. Clinical cancer research 2018; 24: 407-19.
  1. Huang SH, Li Y, Zhang J, Rong J, Ye S. Epidermal growth factor receptor-containing exosomes induce tumor-specific regulatory T cells. Cancer investigation 2013; 31: 330-5.
  1. Zhang B, Zhang Y, Zhao J, Wang Z, Wu T, Ou W, Wang J, Yang B, Zhao Y, Rao Z, Gao J. M2-polarized macrophages contribute to the decreased sensitivity of EGFR-TKIs treatment in patients with advanced lung adenocarcinoma. Medical Oncology 2014; 31:127.
  1. Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L, Blelloch R. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell 2019; 177: 414-27.
  1. Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F, Galon J. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer research 2011; 71: 1263-71.
  1. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nature immunology 2003; 4: 330.
  1. Frydrychowicz M, Boruczkowski M, Kolecka‐Bednarczyk A, Dworacki G. The dual role of Treg in cancer. Scandinavian journal of immunology 2017 Dec;86:436-43.
  1. Chin AR, Wang SE. Cancer-derived extracellular vesicles:the ‘soil conditioner’in breast cancer metastasis?. Cancer and Metastasis Reviews 2016 1; 35: 669-76.
  1. Whiteside T. Tumor-derived exosomes and their role in tumor-induced immune suppression. Vaccines 2016; 4:35.
  1. Syn N, Wang L, Sethi G, Thiery JP, Goh BC. Exosome-mediated metastasis:from epithelial–mesenchymal transition to escape from immunosurveillance. Trends in pharmacological sciences 2016; 37: 606-17.
  1. Fallarino F, Grohmann U, Puccetti P. Indoleamine 2, 3‐dioxygenase:from catalyst to signaling function. European journal of immunology 2012; 42: 1932-7.
  1. Ino K. Indoleamine 2, 3-dioxygenase and immune tolerance in ovarian cancer. Current Opinion in Obstetrics and Gynecology 2011; 23: 13-8.
  1. Chang MH, Ahn HK, Lee J, Jung CK, Choi YL, Park YH, Ahn JS, Park K, Ahn MJ. Clinical impact of amphiregulin expression in patients with epidermal growth factor receptor (EGFR) wild‐type nonsmall cell lung cancer treated with EGFR‐tyrosine kinase inhibitors. Cancer 2011; 117: 143-51.
  1. Higginbotham JN, Beckler MD, Gephart JD, Franklin JL, Bogatcheva G, Kremers GJ, Piston DW, Ayers GD, McConnell RE, Tyska MJ, Coffey RJ. Amphiregulin exosomes increase cancer cell invasion. Current Biology 2011; 21: 779-86.
  1. Wang S, Zhang Y, Wang Y, Ye P, Li J, Li H, Ding Q, Xia J. Amphiregulin confers regulatory T cell suppressive function and tumor invasion via the EGFR/GSK-3β/Foxp3 axis. Journal of Biological Chemistry 2016; 291: 21085-95.
  1. Yi T, Lee HL, Cha JH, Ko SI, Kim HJ, Shin HI, Woo KM, Ryoo HM, Kim GS, Baek JH. Epidermal growth factor receptor regulates osteoclast differentiation and survival through cross‐talking with RANK signaling. Journal of cellular physiology 2008; 217: 409-22.
  1. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Pénault-Llorca F, Perez EA. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer:recommendations by an International TILs Working Group 2014. Annals of oncology 2014; 26: 259-71.
  1. Iglesia MD, Parker JS, Hoadley KA, Serody JS, Perou CM, Vincent BG. Genomic analysis of immune cell infiltrates across 11 tumor types. JNCI:Journal of the National Cancer Institute 2016;108.
  1. Brambilla E, Le Teuff G, Marguet S, Lantuejoul S, Dunant A, Graziano S, Pirker R, Douillard JY, Le Chevalier T, Filipits M, Rosell R. Prognostic effect of tumor lymphocytic infiltration in resectable non–small-cell lung cancer. Journal of Clinical Oncology 2016; 34: 1223.
  1. Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KW, Yeong JP, Nahar R, Zhang T, Kared H, Duan K. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018; 557:575.
  1. Teng MW, Ngiow SF, Ribas A, Smyth MJ. Classifying cancers based on T-cell infiltration and PD-L1. Cancer research 2015; 75: 2139-45.
  1. Haratani K, Hayashi H, Tanaka T, Kaneda H, Togashi Y, Sakai K, Hayashi K, Tomida S, Chiba Y, Yonesaka K, Nonagase Y. Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Annals of oncology 2017; 28: 1532-9.
  1. Schalper KA, Mani N, Toki M, Carvajal-Hausdorf DE, Herbst RS, Rimm DL. Clinical value of measuring T-cell activation and proliferation using multiplexed quantitative fluorescence in non-small cell lung cancer (NSCLC).
  1. Toki MI, Mani N, Smithy JW, Liu Y, Altan M, Wasserman B, Tuktamyshov R, Schalper K, Syrigos KN, Rimm DL. Immune Marker Profiling and Programmed Death Ligand 1 Expression Across NSCLC Mutations. Journal of Thoracic Oncology 2018; 13: 1884-96.
  1. Toki MI, Mani N, Smithy JW, Liu Y, Altan M, Wasserman B, Tuktamyshov R, Schalper K, Syrigos KN, Rimm DL. Immune Marker Profiling and Programmed Death Ligand 1 Expression Across NSCLC Mutations. Journal of Thoracic Oncology 2018;13: 1884-96.
  1. Yáñez-Mó M, Siljander PR, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colás E. Biological properties of extracellular vesicles and their physiological functions. Journal of extracellular vesicles 2015; 4:27066.
  1. Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance:a comprehensive review. Cancer and Metastasis Reviews 2013; 32: 623-42.
  1. Zhang C, Ji Q, Yang Y, Li Q, Wang Z. Exosome:Function and role in cancer metastasis and drug resistance. Technology in cancer research & treatment 2018; 17:1533033818763450.
  1. Steinbichler TB, Dudas J, Riechelmann H, Skvortsova II. The role of exosomes in cancer metastasis. InSeminars in cancer biology 2017 1 (Vol. 44, pp. 170-181). Academic Press.
  1. Weidle UH, Birzele F, Kollmorgen G, Rueger R. The multiple roles of exosomes in metastasis. Cancer Genomics-Proteomics 2017; 14: 1-5.
  1. Jin H, Wu Y, Tan X. The role of pancreatic cancer-derived exosomes in cancer progress and their potential application as biomarkers. Clinical and Translational Oncology 2017 1;19:921-30.
  1. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer:cell-to-cell mediators of metastasis. Cancer cell 2016; 30: 836-48.
  1. Melo SA, Sugimoto H, O’Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, Lucci A. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer cell 2014; 26: 707-21.
  1. Lobb RJ, Lima LG, Möller A. Exosomes:key mediators of metastasis and pre-metastatic niche formation. InSeminars in cell & developmental biology 2017 1 (Vol. 67, pp. 3-10). Academic Press.
  1. Allard D, Chrobak P, Allard B, Messaoudi N, Stagg J. Targeting the CD73-adenosine axis in immuno-oncology. Immunology letters 2018; 24.
  1. Streicher K, Higgs BW, Wu S, Coffman K, Damera G, Durham N, Greenlees L, Lazdun Y, Cheng L, Cooper Z, Ranade K. Increased CD73 and reduced IFNG signature expression in relation to response rates to anti-PD-1 (L1) therapies in EGFR-mutant NSCLC.
  1. Adamiak M, Bujko K, Cymer M, Plonka M, Glaser T, Kucia M, Ratajczak J, Ulrich H, Abdel-Latif A, Ratajczak MZ. Correction:Novel evidence that extracellular nucleotides and purinergic signaling induce innate immunity-mediated mobilization of hematopoietic stem/progenitor cells. Leukemia 2019; 8:1.
  1. Ishii H, Azuma K, Kinoshita T, Matsuo N, Naito Y, Tokito T, Yamada K, Hoshino T. Predictive value of CD73 expression in EGFR-mutation positive non-small-cell lung cancer patients received immune checkpoint inhibitors.
  1. Pollack BP, Sapkota B, Cartee TV. Epidermal growth factor receptor inhibition augments the expression of MHC class I and II genes. Clinical cancer research 2011; 17: 4400-13.
  1. Mortara L, Castellani P, Meazza R, Tosi G, Barbaro AD, Procopio FA, Comes A, Zardi L, Ferrini S, Accolla RS. CIITA-induced MHC class II expression in mammary adenocarcinoma leads to a Th1 polarization of the tumor microenvironment, tumor rejection, and specific antitumor memory. Clinical cancer research. 2006; 12: 3435-43.
  1. Lotem M, Machlenkin A, Hamburger T, Nissan A, Kadouri L, Frankenburg S, Gimmon Z, Elias O, David IB, Kuznetz A, Shiloni E. Autologous melanoma vaccine induces antitumor and self-reactive immune responses that affect patient survival and depend on MHC class II expression on vaccine cells. Clinical cancer research 2009; 15: 4968-77.
  1. Burns WR, Zhao Y, Frankel TL, Hinrichs CS, Zheng Z, Xu H, Feldman SA, Ferrone S, Rosenberg SA, Morgan RA. A high molecular weight melanoma-associated antigen–specific chimeric antigen receptor redirects lymphocytes to target human melanomas. Cancer research. 2010; 70: 3027-33.
  1. Garrido G, Rabasa A, Garrido C, Chao L, Garrido F, García-Lora ÁM, Sánchez-Ramírez B. Upregulation of HLA class I expression on tumor cells by the anti-EGFR antibody nimotuzumab. Frontiers in pharmacology 2017; 8: 595.
  1. Watanabe S, Hayashi H, Haratani K, Shimizu S, Tanizaki J, Sakai K, Kawakami H, Yonesaka K, Tsurutani J, Togashi Y, Nishio K. Mutational activation of the epidermal growth factor receptor down‐regulates major histocompatibility complex class I expression via the extracellular signal‐regulated kinase in non–small cell lung cancer. Cancer science 2019; 110:52.
  1. Im JS, Herrmann AC, Bernatchez C, Haymaker C, Molldrem JJ, Hong WK, Perez-Soler R. Immune-modulation by epidermal growth factor receptor inhibitors:implication on anti-tumor immunity in lung cancer. PLoS One 2016; 11: e0160004.
  1. Kumai T, Matsuda Y, Oikawa K, Aoki N, Kimura S, Harabuchi Y, Celis E, Kobayashi H. EGFR inhibitors augment antitumour helper T-cell responses of HER family-specific immunotherapy. British journal of cancer 2013; 109:2155.
  1. Venugopalan A, Lee MJ, Niu G, Medina-Echeverz J, Tomita Y, Lizak MJ, Cultraro CM, Simpson RM, Chen X, Trepel JB, Guha U. EGFR-targeted therapy results in dramatic early lung tumor regression accompanied by imaging response and immune infiltration in EGFR mutant transgenic mouse models. Oncotarget 2016; 7:54137.
  1. Garrido G, Rabasa A, Garrido C, Lopez A, Chao L, García-Lora ÁM, Garrido F, Fernández LE, Sánchez B. Preclinical modeling of EGFR-specific antibody resistance:oncogenic and immune-associated escape mechanisms. Oncogene 2014; 33:3129.
  1. Herbst RS, Heymach JV, Lippman SM.Lung cancer. The New England Journal of Medicine 2008; 359: 1367-80.
  1. Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development:EGFR gene and cancer. The S journal 2010; 277: 301-8.
  1. Wu JY, Yu CJ, Chang YC, Yang CH, Shih JY, Yang PC. Effectiveness of tyrosine kinase inhibitors on “uncommon” epidermal growth factor receptor mutations of unknown clinical significance in non–small cell lung cancer. Clinical cancer research 20111; 17: 3812-21.
  1. Arcila ME, Nafa K, Chaft JE, Rekhtman N, Lau C, Reva BA, Zakowski MF, Kris MG, Ladanyi M. EGFR exon 20 insertion mutations in lung adenocarcinomas:prevalence, molecular heterogeneity, and clinicopathologic characteristics. Molecular cancer therapeutics 2013; 12: 220-9.
  1. Oxnard GR, Lo PC, Nishino M, Dahlberg SE, Lindeman NI, Butaney M, Jackman DM, Johnson BE, Jänne PA. Natural history and molecular characteristics of lung cancers harboring EGFR exon 20 insertions. Journal of Thoracic Oncology 2013; 8: 179-84.
  1. Kobayashi Y, Togashi Y, Yatabe Y, Mizuuchi H, Jangchul P, Kondo C, Shimoji M, Sato K, Suda K, Tomizawa K, Takemoto T. EGFR exon 18 mutations in lung cancer:molecular predictors of augmented sensitivity to afatinib or neratinib as compared with first-or third-generation TKIs. Clinical cancer research 20151; 21: 5305-13.
  1. Yamada T, Hirai S, Katayama Y, Yoshimura A, Shiotsu S, Watanabe S, Kikuchi T, Hirose K, Kubota Y, Chihara Y, Harada T. Retrospective efficacy analysis of immune checkpoint inhibitors in patients with EGFR‐mutated non‐small cell lung cancer. Cancer medicine 2019; 21.
  1. Yoshida H, Kim YH, Ozasa H, Nagai H, Sakamori Y, Tsuji T, Nomizo T, Yasuda Y, Funazo T, Hirai T. Nivolumab in non-small-cell lung cancer with EGFR mutation. Annals of oncology 2017; 29: 777-8.
  1. Gettinger S, Horn L, Jackman D, Spigel D, Antonia S, Hellmann M, Powderly J, Heist R, Sequist LV, Smith DC, Leming P. Five-year follow-up of nivolumab in previously treated advanced non–small-cell lung cancer:results from the CA209-003 study. Journal of Clinical Oncology 2018; 36: 1675-84.
  1. Yoshida H, Kim YH, Ozasa H, Nagai H, Sakamori Y, Tsuji T, Nomizo T, Yasuda Y, Funazo T, Hirai T. Nivolumab in non-small-cell lung cancer with EGFR mutation. Annals of oncology 2017; 29: 777-8.
  1. Abdelhamed S, Ogura K, Yokoyama S, Saiki I, Hayakawa Y. AKT-STAT3 pathway as a downstream target of EGFR signaling to regulate PD-L1 expression on NSCLC cells. Journal of Cancer 2016; 7:1579.
  1. D'incecco A, Andreozzi M, Ludovini V, Rossi E, Capodanno A, Landi L, Tibaldi C, Minuti G, Salvini J, Coppi E, Chella A. PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. British journal of cancer 2015; 112:95.
  1. Lin PL, Wu TC, Wu DW, Wang L, Chen CY, Lee H. An increase in BAG-1 by PD-L1 confers resistance to tyrosine kinase inhibitor in non–small cell lung cancer via persistent activation of ERK signalling. European journal of cancer 2017; 85: 95-105.
  1. Lin K, Cheng J, Yang T, Li Y, Zhu B. EGFR-TKI down-regulates PD-L1 in EGFR mutant NSCLC through inhibiting NF-κB. Biochemical and biophysical research communications 2015; 463(1-2): 95-101.
  1. Zhang W, Pang Q, Yan C, Wang Q, Yang J, Yu S, Liu X, Yuan Z, Wang P, Xiao Z. induction of PD-l1 expression by epidermal growth factor receptor–mediated signaling in esophageal squamous cell carcinoma. OncoTargets and therapy 2017; 10:763.
  1. Ota K, Azuma K, Kawahara A, Hattori S, Iwama E, Tanizaki J, Harada T, Matsumoto K, Takayama K, Takamori S, Kage M. Induction of PD-L1 expression by the EML4–ALK oncoprotein and downstream signaling pathways in non–small cell lung cancer. Clinical cancer research 2015; 21: 4014-21.
  1. Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S, Zhang Y, He X, Zhou T, Qin T, Huang Y. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC:implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. Journal of Thoracic Oncology 2015; 10: 910-23.
  1. Lastwika K, Wilson W, Dennis PA. PI3K/AKT/mTOR pathway activation drives expression of the immune inhibitory ligand PD-L1 in NSCLC.
  1. Yokogami K, Wakisaka S, Avruch J, Reeves SA. Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Current Biology. 2000; 10: 47-50.
  1. Okita R, Maeda A, Shimizu K, Nojima Y, Saisho S, Nakata M. PD-L1 overexpression is partially regulated by EGFR/HER2 signaling and associated with poor prognosis in patients with non-small-cell lung cancer. Cancer Immunology, Immunotherapy 2017; 66: 865-76.
  1. Zhang N, Zeng Y, Du W, Zhu J, Shen D, Liu Z, Huang JA. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. International journal of oncology 2016; 49: 1360-8.
  1. Cheng CC, Lin HC, Tsai KJ, Chiang YW, Lim KH, Chen CG, Su YW, Peng CL, Ho AS, Huang L, Chang YC. Epidermal growth factor induces STAT1 expression to exacerbate the IFNr‐mediated PD‐L1 axis in epidermal growth factor receptor‐positive cancers. Molecular carcinogenesis 2018; 57: 1588-98.
  1. Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL, Travis WD, Bornmann W, Veach D, Clarkson B, Bromberg JF. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. The Journal of clinical investigation. 2007 ; 117: 3846-56.
  1. Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW, Khoo KH, Chang SS, Cha JH, Kim T, Hsu JL. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature communications 2016; 7:12632.
  1. Takada K, Toyokawa G, Tagawa T, Kohashi K, Shimokawa M, Akamine T, Takamori S, Hirai F, Shoji F, Okamoto T, Oda Y, Maehara Y.PD-L1 expression according to the EGFR status in primary lung adenocarcinoma. Lung Cancer 2018; 116: 1-6.
  1. Lee J, Park CK, Yoon HK, Sa YJ, Woo IS, Kim HR, Kim SY, Kim TJ. PD-L1 expression in ROS1-rearranged non-small cell lung cancer:A study using simultaneous genotypic screening of EGFR, ALK, and ROS1. Thoracic Cancer 2019; 10: 103-110.
  1. Heigener DF, Reck M.Impact of PD-L1 Expression in EGFR-Positive NSCLC? The Answer Remains the Same. Journal of Thoracic Oncology 2018; 13: 1060-1061.
  1. Ji M, Liu Y, Li Q, Li X, Ning Z, Zhao W, Shi H, Jiang J, Wu C. PD-1/PD-L1 expression in non-small-cell lung cancer and its correlation with EGFR/KRAS mutations. Cancer biology & therapy 2016; 17: 407-13.
  1. Li J, Chen Y, Shi X, Le X, Feng F, Chen J, Zhou C, Chen Y, Wen S, Zeng H, Chen AM. A systematic and genome-wide correlation meta-analysis of PD-L1 expression and targetable NSCLC driver genes. Journal of thoracic disease 2017; 9:2560.
  1. Hersom M, Jørgensen JT. Companion and Complementary Diagnostics–Focus on PD-L1 Expression Assays for PD-1/PD-L1 Checkpoint Inhibitors in Non–Small Cell Lung Cancer. Therapeutic drug monitoring 2018; 40: 9-16.
  1. Büttner R, Gosney JR, Skov BG, Adam J, Motoi N, Bloom KJ, Dietel M, Longshore JW, López-Ríos F, Penault-Llorca F, Viale G. Programmed death-ligand 1 immunohistochemistry testing:a review of analytical assays and clinical implementation in non–small-cell lung cancer. Journal of Clinical Oncology 2017; 35: 3867-76.
  1. Nakamura S, Hayashi K, Imaoka Y, Kitamura Y, Akazawa Y, Tabata K, Groen R, Tsuchiya T, Yamasaki N, Nagayasu T, Fukuoka J. Intratumoral heterogeneity of programmed cell death ligand-1 expression is common in lung cancer. PLoS One 2017; 12: e0186192.
  1. Taube JM. Unleashing the immune system:PD-1 and PD-Ls in the pre-treatment tumor microenvironment and correlation with response to PD-1/PD-L1 blockade. Oncoimmunology 2014 ; 3:e963413.
  1. Berchuck A, Olt GJ, Soisson AP, Kamel A, Soper JT, Boyer CM, Clarke-Pearson DL, Leslie DS, Bast Jr RC. Heterogeneity of antigen expression in advanced epithelial ovarian cancer. American journal of obstetrics and gynecology 1990; 162: 883-8.
  1. Passiglia F, Bronte G, Bazan V, Natoli C, Rizzo S, Galvano A, Listì A, Cicero G, Rolfo C, Santini D, Russo A. PD-L1 expression as predictive biomarker in patients with NSCLC:a pooled analysis. Oncotarget 2016; 7: 19738.
  1. Noguchi T, Ward JP, Gubin MM, Arthur CD, Lee SH, Hundal J, Selby MJ, Graziano RF, Mardis ER, Korman AJ, Schreiber RD. Temporally distinct PD-L1 expression by tumor and host cells contributes to immune escape. Cancer immunology research 2017; 5: 106-17.
  1. Cohen MH, Williams GA, Sridhara R, Chen G, McGuinn WD, Morse D, Abraham S, Rahman A, Liang C, Lostritto R, Baird A. United States Food and Drug Administration drug approval summary:gefitinib (ZD1839; Iressa) tablets. Clinical cancer research 2004; 10: 1212-8.
  1. Cohen MH, Johnson JR, Chen YF, Sridhara R, Pazdur R. FDA drug approval summary:erlotinib (Tarceva®) tablets. The oncologist. 2005; 10: 461-6.
  1. Miller VA, Hirsh V, Cadranel J, Chen YM, Park K, Kim SW, Zhou C, Su WC, Wang M, Sun Y, Heo DS. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1):a phase 2b/3 randomised trial. The lancet oncology 2012; 13: 528-38.
  1. Park K, Tan EH, O'Byrne K, Zhang L, Boyer M, Mok T, Hirsh V, Yang JC, Lee KH, Lu S, Shi Y. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7):a phase 2B, open-label, randomised controlled trial. The Lancet Oncology 2016; 17: 577-89.
  1. Suda K, Rivard CJ, Mitsudomi T, Hirsch FR. Overcoming resistance to EGFR tyrosine kinase inhibitors in lung cancer, focusing on non-T790M mechanisms. Expert review of anticancer therapy 2017; 17: 779-86.
  1. Hata A, Katakami N, Nanjo S, Okuda C, Kaji R, Masago K, Fujita S, Yoshida H, Zama K, Imai Y, Hirata Y. Programmed death-ligand 1 expression and T790M status in EGFR-mutant non-small cell lung cancer. Lung Cancer 2017; 111: 182-9.
  1. Dominguez C, Tsang KY, Palena C. Short-term EGFR blockade enhances immune-mediated cytotoxicity of EGFR mutant lung cancer cells:rationale for combination therapies. Cell death & disease 2016 ; 7:e2380.
  1. Brea EJ, Oh CY, Manchado E, Budhu S, Gejman RS, Mo G, Mondello P, Han JE, Jarvis CA, Ulmert D, Xiang Q. Kinase regulation of human MHC class I molecule expression on cancer cells. Cancer immunology research 2016; 4: 936-47.
  1. Helland Å, Brustugun OT, Nakken S, Halvorsen AR, Dønnem T, Bremnes R, Busund LT, Sun J, Lorenz S, Solberg SK, Jørgensen LH. High number of kinome‐mutations in non‐small cell lung cancer is associated with reduced immune response and poor relapse‐free survival. International journal of cancer 2017; 141: 184-90.
  1. Busch SE, Hanke ML, Kargl J, Metz HE, MacPherson D, Houghton AM. Lung cancer subtypes generate unique immune responses. The Journal of Immunology 2016; 197: 4493-503.
  1. Sawanobori Y, Ueha S, Kurachi M, Shimaoka T, Talmadge JE, Abe J, Shono Y, Kitabatake M, Kakimi K, Mukaida N, Matsushima K. Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 2008; 111: 5457-66.
  1. Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, Kanojia D, Pituch KC, Qiao J, Pytel P, Han Y. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer research 2016; 76: 5671-82.
  1. Yamaki M, Sugiura K, Muro Y, Shimoyama Y, Tomita Y. Epidermal growth factor receptor tyrosine kinase inhibitors induce CCL2 and CCL5 via reduction in IL‐1R2 in keratinocytes. Experimental dermatology 2010; 19: 730-5.
  1. Paul T, Schumann C, Rüdiger S, Boeck S, Heinemann V, Kächele V, Steffens M, Scholl C, Hichert V, Seufferlein T, Stingl JC. Cytokine regulation by epidermal growth factor receptor inhibitors and epidermal growth factor receptor inhibitor associated skin toxicity in cancer patients. European journal of cancer 2014; 50: 1855-63.
  1. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nature reviews immunology 2009:162.
  1. Millrud CR, Bergenfelz C, Leandersson K. On the origin of myeloid- derived suppressor cells. Oncotarget 2017: 3649-3665.
  1. Emmanuel C, Gava N, Kennedy C, Balleine RL, Sharma R, Wain G, Brand A, Hogg R, Etemadmoghadam D, George J, Birrer MJ. Comparison of expression profiles in ovarian epithelium in vivo and ovarian cancer identifies novel candidate genes involved in disease pathogenesis. PLoS One 2011; 6:e17617.
  1. Andresen E, Günther G, Bullwinkel J, Lange C, Heine H. Increased expression of beta-defensin 1 (DEFB1) in chronic obstructive pulmonary disease. PLoS One 2011; 6:e21898.
  1. De Santa F, Narang V, Yap ZH, Tusi BK, Burgold T, Austenaa L, Bucci G, Caganova M, Notarbartolo S, Casola S, Testa G. Jmjd3 contributes to the control of gene expression in LPS‐activated macrophages. The EMBO journal 2009; 28: 3341-52.
  1. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002; 298: 1039-43.
  1. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006; 441:349.
  1. Hahn MA, Hahn T, Lee DH, Esworthy RS, Kim BW, Riggs AD, Chu FF, Pfeifer GP. Methylation of polycomb target genes in intestinal cancer is mediated by inflammation. Cancer research 2008; 68 :10280-9.
  1. Ishii M, Wen H, Corsa CA, Liu T, Coelho AL, Allen RM, Carson WF, Cavassani KA, Li X, Lukacs NW, Hogaboam CM. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood 2009; 114: 3244-54.
  1. Chen X, El Gazzar M, Yoza BK, McCall CE. The NF-κB factor RelB and histone H3 lysine methyltransferase G9a directly interact to generate epigenetic silencing in endotoxin tolerance. Journal of Biological Chemistry 2009; 284: 27857-65.
  1. Zhou J, Qu Z, Sun F, Han L, Li L, Yan S, Stabile LP, Chen LF, Siegfried JM, Xiao G. Myeloid STAT3 promotes lung tumorigenesis by transforming tumor immunosurveillance into tumor-promoting inflammation. Cancer immunology research 2017; 5:257-68.
  1. El Gazzar M, Yoza BK, Chen X, Hu J, Hawkins GA, McCall CE. G9a and HP1 couple histone and DNA methylation to TNFα transcription silencing during endotoxin tolerance. Journal of Biological Chemistry 2008Nov; 283: 32198-208.
  1. Bird AP. CpG-rich islands and the function of DNA methylation. Nature 1986; 321:209.
  1. Hermann A, Gowher H, Jeltsch A. Biochemistry and biology of mammalian DNA methyltransferases. Cellular and Molecular Life Sciences CMLS 2004; 61: 2571-87.
  1. Wu AA, Drake V, Huang HS, Chiu S, Zheng L. Reprogramming the tumor microenvironment:tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology 2015; 4:e1016700.
  1. Han JJ, Kim DW, Koh J, Keam B, Kim TM, Jeon YK, Lee SH, Chung DH, Heo DS. Change in PD-L1 expression after acquiring resistance to gefitinib in EGFR-mutant non–small-cell lung cancer. Clinical lung cancer 2016 ; 17: 263-70.
  1. Hsu KH, Huang YH, Tseng JS, Chen KC, Ku WH, Su KY, Chen JJ, Chen HW, Yu SL, Yang TY, Chang GC. High PD-L1 expression correlates with primary resistance to EGFR-TKIs in treatment naïve advanced EGFR-mutant lung adenocarcinoma patients. Lung Cancer. 2019 ;127:37-43.
  1. Su S, Dong ZY, Xie Z, Yan LX, Li YF, Su J, Liu SY, Yin K, Chen RL, Huang SM, Chen ZH. Strong programmed death ligand 1 expression predicts poor response and De Novo resistance to EGFR tyrosine kinase inhibitors among NSCLC patients with EGFR mutation. Journal of Thoracic Oncology. 2018; 13: 1668-75.
  1. Soria JC, Wu YL, Nakagawa K, Kim SW, Yang JJ, Ahn MJ, Wang J, Yang JC, Lu Y, Atagi S, Ponce S. Gefitinib plus chemotherapy versus placebo plus chemotherapy in EGFR-mutation-positive non-small-cell lung cancer after progression on first-line gefitinib (IMPRESS): a phase 3 randomised trial. The Lancet Oncology. 2015; 16: 990-8.
  1. Lisberg A, Cummings A, Goldman JW, Bornazyan K, Reese N, Wang T, Coluzzi P, Ledezma B, Mendenhall M, Hunt J, Wolf B. A phase II study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor naïve patients with advanced NSCLC. Journal of Thoracic Oncology. 2018; 13: 1138-45.
  1. Hegde PS, Wallin JJ, Mancao C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. InSeminars in cancer biology. 2018; 52: 117-124.
  1. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature medicine. 1996; 2: 1096.
  1. Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, Lal P, Feldman MD, Benencia F, Coukos G. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nature medicine. 2014; 20: 607.
  1. Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T, Zeng W, Giobbie-Hurder A, Atkins MB, Ibrahim N, Friedlander P. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer immunology research. 2014; 2: 632-42.
  1. Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S, Hernandez G, Mier J, He X, Hodi FS, Denker M. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nature communications. 2016; 7: 12624.
  1. Reck M, Mok TS, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, Thomas CA. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. The Lancet Respiratory Medicine. 2019; 7: 387-401.
  1. Blakely CM, Watkins TB, Wu W, Gini B, Chabon JJ, McCoach CE, McGranahan N, Wilson GA, Birkbak NJ, Olivas VR, Rotow J. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nature genetics. 2017; 49: 1693.
  1. Abdelhamed S, Ogura K, Yokoyama S, Saiki I, Hayakawa Y. AKT-STAT3 pathway as a downstream target of EGFR signaling to regulate PD-L1 expression on NSCLC cells. Journal of Cancer 2016; 7:1579.
  1. Gibbons DL, Chow LQ, Kim DW, Kim SW, Yeh T, Song X, Jiang H, Taylor R, Karakunnel J, Creelan B. 57O Efficacy, safety and tolerability of MEDI4736 (durvalumab [D]), a human IgG1 anti-programmed cell death-ligand-1 (PD-L1) antibody, combined with gefitinib (G): A phase I expansion in TKI-naïve patients (pts) with EGFR mutant NSCLC. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. 2016 Apr;11(4 Suppl):S79.
  1. Planchard D, Barlesi F, Gomez-Roca C, Mazieres J, Varga A, Greillier L, Chaput N, Parlavecchio C, Malekzadeh K, Ngocamus M, Zahi S. Phase I, safety, tolerability and preliminary efficacy study of tremelimumab (Trem) in combination with gefitinib (Gef) in EGFR-mutant (EGFR-mut) NSCLC (GEFTREM). Annals of Oncology. 2016 Oct 1;27(suppl_6).
  1. Spigel DR, Reynolds C, Waterhouse D, Garon EB, Chandler J, Babu S, Thurmes P, Spira A, Jotte R, Zhu J, Lin WH. Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of anaplastic lymphoma kinase translocation—positive advanced non–small cell lung cancer (CheckMate 370). Journal of Thoracic Oncology. 2018 May 1;13(5):682-8.
  1. Gettinger S, Rizvi N, Chow LQ, Borghaei H, Brahmer JR, Juergens R, Shepherd FA, Laurie SA, Gerber DE, Goldman J, Shen Y. 1054PD Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with platinum-based doublet chemotherapy (PT-DC) or erlotinib (ERL) in advanced non-small cell lung cancer (NSCLC). Annals of Oncology. 2014 Sep 1;25(suppl_4):iv363-.
  1. Ma BB, Rudin CM, Cervantes A, Dowlati A, Costa D, Schmid P, Heist R, Villaflor VM, Sarkar I, Huseni MA, Foster P. 441O Preliminary safety and clinical activity of erlotinib plus atezolizumab from a Phase Ib study in advanced NSCLC. Annals of Oncology. 2016 Dec 1;27(suppl_9).
  1. Ahn MJ, Yang J, Yu H, Saka H, Ramalingam S, Goto K. Osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: results from the TATTON phase Ib trial. J Thorac Oncol. 2016 Apr 1;11(4):S115
  1. Garassino MC, Cho BC, Kim JH, Mazieres J, Gray JE, Wheatley-Price P, Park K, Soo RA, Huang Y, Wadsworth C, Dennis PA. Durvalumab in≥ 3rd-line advanced NSCLC: Updated results from the phase 2 ATLANTIC study.198. Lisberg A, Cummings A, Goldman JW, Bornazyan K, Reese N, Wang T, Coluzzi P, Ledezma B, Mendenhall M, Hunt J, Wolf B. A phase II study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor naïve patients with advanced NSCLC. Journal of Thoracic Oncology. 2018 Aug 1;13:1138-45.
  1. Cappuzzo F, McCleod M, Hussein M, Morabito A, Rittmeyer A, Conter HJ, Kopp HG, Daniel D, Mccune S, Mekhail T, Zer A. LBA53 IMpower130: progression-free survival (PFS) and safety analysis from a randomised Phase III study of carboplatin+ nab-paclitaxel (CnP) with or without atezolizumab (atezo) as first-line (1L) therapy in advanced non-squamous NSCLC. Annals of Oncology. 2018 Oct 1;29(suppl_8):mdy424-065.

你可能感兴趣的:(【万字综述】Molecular Cancer: 免疫微环境与ICIs治疗EGFR突变NSCLC疗效的关系)