找不到原文了,先贴过来
Java层 要开启一个播放器进行播放, 需要以下几行代码:
Java代码
MediaPlayer mp = new MediaPlayer();
mp.setDisplay (...); /// 设置播放器Suface
mp.setDataSource(PATH_TO_FILE); ///设置媒体URI
mp.prepare(); /// 初始化播放器
mp.start(); /// 开始播放
MediaPlayer 的Native 层 实际上是由 stagefright 模块 以及 OMX 模块组成, 其中stagefright 依赖OMX进行编解码. (据说 stagefright 和OMX 本质上是利用OpenBinder进行通讯,不过我没研究这里)
1. AwesomePlayer
忽略掉 JNI 封装层, Stagefright 从 AP开始. AP 是Stagefright核心类. AP有一些接口甚至与MediaPlayer 是一一对应的例如setDataSource, prepare.
1.1 关键成员分析
OMXClient mClient
AP利用OMXClient 跟OMX IL进行通信. 这里OMX IL类似于一个服务端. AP 作为一个客户端, 请求OMX IL进行解码的工作.
TimedEventQueue mQueue
AP采用定时器队列的方式进行运作. mQueue 在MediaPlayer调用 prepare的时候就开始运作, (而不是MediaPlayer.start).
C++代码
status_t AwesomePlayer::prepareAsync_l() {
if (!mQueueStarted) {
mQueue.start();
mQueueStarted = true;
}
return OK;
}
AP处理了几个定时器事件, 包括 onVideoEvent(); onStreamDone(); onBufferingUpdate();onCheckAudioStatus() ; onPrepareAsyncEvent();
sp<ISurface> mISurface;
供播放器渲染的画布
sp<AwesomeRenderer> mVideoRenderer;
负责将解码后的图片渲染输出
sp<MediaSource> mVideoTrack; sp<MediaSource> mAudioTrack;
分别代表一个视频轨道和音频轨道, 用于提取视频帧和音频帧. mVideoTrack和mAudioTrack 在 onPrepareAsyncEvent事件被触发时, 由MediaExtractor分离出来.
C++代码
void AwesomePlayer::onPrepareAsyncEvent() {
status_t err = finishSetDataSource_l();
}
C++代码
status_t AwesomePlayer::finishSetDataSource_l() {
sp<MediaExtractor> extractor = MediaExtractor::Create(dataSource);
return setDataSource_l(extractor);
}
C++代码
status_t AwesomePlayer::setDataSource_l(const sp<MediaExtractor> &extractor) {
for (size_t i = 0; i < extractor->countTracks(); ++i) {
sp<MetaData> meta = extractor->getTrackMetaData(i);
const char *mime;
CHECK(meta->findCString(kKeyMIMEType, &mime));
if (!haveVideo && !strncasecmp(mime, "video/", 6)) {
setVideoSource(extractor->getTrack(i)); //
haveVideo = true;
} else if (!haveAudio && !strncasecmp(mime, "audio/", 6)) {
setAudioSource(extractor->getTrack(i));
haveAudio = true;
if (haveAudio && haveVideo) {
break;
}
}
}
从上面这段代码可以看到AwesomePlayer默认采用第一个VideoTrack和第一个AudioTrack, 那如何切换VideoTrack和AudioTrack?
sp<MediaSource> mVideoSource;
mVideoSource 可以认为是一个视频解码器的封装, 用于产生视频图像供AwesomeRender渲染, mVideoSource的数据源则由mVideoTrack提供.
mVideoSource 由OMXCodec创建.
C++代码
status_t AwesomePlayer::initVideoDecoder(uint32_t flags) {
mVideoSource = OMXCodec::Create(
mClient.interface(), mVideoTrack->getFormat(),
false, // createEncoder
mVideoTrack,
NULL, flags);
}
sp<MediaSource> mAudioSource; sp<MediaPlayerBase::AudioSink> mAudioSink; AudioPlayer *mAudioPlayer;
mAudioSource 也可以认为是一个音频解码器的封装
mAudioSink 代表一个音频输出设备. 用于播放解码后的音频数据. (AudioSink is used for in-memory decode and potentially other applications where output doesn't go straight to hardware)
mAudioPlayer 把mAudioSource和mAudioSink 包起来,完成一个音频播放器的功能. 如start, stop, pause, seek 等.
AudioPlayer和 AudioSink通过Callback建立关联. 当AudioSink可以输出音频时,会通过回调通知AudioPlayer填充音频数据. 而此时AudioPlayer 会尝试从AudioSource 读取音频数据.
总结: 从关键的成员可以看出, AwesomePlayer 拥有视频源和音频源 (VideoTrack, AudioTrack), 有音视频解码器(VideoSoure, AudioSource), 可以渲染图像 (AwesomeRenderer) , 可以输出声音 (AudioSink), 具备一个播放器完整的材料了.
1.2 基本播放流程
1.2.1 设置数据源URI
C++代码
status_t AwesomePlayer::setDataSource_l(
const char *uri, const KeyedVector<String8, String8> *headers) {
/// 这里只是把URL保存起来而已, 真正的工作在Prepare之后进行
mUri = uri;
return OK;
}
1.2.2 开启定时器队列,并且 Post一个AsyncPrepareEvent 事件
C++代码
status_t AwesomePlayer::prepareAsync_l() {
/// 开启定时器队列
mQueue.start();
/// Post AsyncPrepare 事件
mAsyncPrepareEvent = new AwesomeEvent(
this, &AwesomePlayer::onPrepareAsyncEvent);
mQueue.postEvent(mAsyncPrepareEvent);
return OK;
}
Prepare 之后, AwesomePlayer 开始运作.
1.2.3 AsyncPrepare 事件被触发
当这个事件被触发时, AwesomePlayer 开始创建 VideoTrack和AudioTrack , 然后创建 VideoDecoder和AudioDecoder
C++代码
void AwesomePlayer::onPrepareAsyncEvent() {
/// a. 创建视频源和音频源
finishSetDataSource_l();
/// b. 创建视频解码器
initVideoDecoder();
/// c. 创建音频解码器
initAudioDecoder();
}
至此,播放器准备工作完成, 可以开始播放了
1.2.4 Post 第一个VideoEvent
AwesomePlayer::play() 调用 -> AwesomePlayer::play_l() 调用 -> AwesomePlayer::postVideoEvent_l(int64_t delayUs)
C++代码
void AwesomePlayer::postVideoEvent_l(int64_t delayUs) {
mQueue.postEventWithDelay(mVideoEvent, delayUs < 0 ? 10000 : delayUs);
}
1.2.5 VideoEvent 被触发
C++代码
void AwesomePlayer::onVideoEvent() {
/// 从视频解码器中读出视频图像
mVideoSource->read(&mVideoBuffer, &options);
/// 创建AwesomeRenderer (如果没有的话)
if (mVideoRendererIsPreview || mVideoRenderer == NULL) {
initRenderer_l();
}
/// 渲染视频图像
mVideoRenderer->render(mVideoBuffer);
/// 再次发送一个VideoEvent, 这样播放器就不停的播放了
postVideoEvent_l();
}
总结: SetDataSource -> Prepare -> Play -> postVieoEvent -> OnVideoEvent -> postVideoEvent-> .... onVideoEvent-> postStreamDoneEvent -> 播放结束
1.3 视频 / 音频 分离
1.3.1 创建DataSource
如前面提到的, 当AsyncPrepare 事件被触发时, AwesomePlayer会调用 finishSetDataSource_l 创建 VideoTrack 和 AudioTrack.
finishSetDataSource_l 通过URI前缀判断媒体类型, 比如 http, rtsp,或者本地文件等
这里的uri就是一开始 通过setDataSource设置的
根据uri 创建相应的DataSource, 再进一步的利用 DataSource 创建MediaExtractor做A/V分离
C++代码
status_t AwesomePlayer::finishSetDataSource_l() {
sp<DataSource> dataSource;
/// 通过URI前缀判断媒体类型, 比如 http, rtsp,或者本地文件等
/// 这里的uri就是一开始 通过setDataSource设置的
/// 根据uri 创建相应的MediaExtractor
if (!strncasecmp("http://", mUri.string(), 7)) {
mConnectingDataSource = new NuHTTPDataSource;
mConnectingDataSource->connect(mUri, &mUriHeaders);
mCachedSource = new NuCachedSource2(mConnectingDataSource);
dataSource = mCachedSource;
} else if (!strncasecmp("rtsp://", mUri.string(), 7)) {
mRTSPController->connect(mUri.string());
sp<MediaExtractor> extractor = mRTSPController.get();
/// rtsp 比较特殊, MediaExtractor对象的创建不需要DataSource
return setDataSource_l(extractor);
} else {
/// 本地文件
dataSource = DataSource::CreateFromURI(mUri.string(), &mUriHeaders);
}
/// 用dataSource创建一个MediaExtractor用于A/V分离
sp<MediaExtractor> extractor = MediaExtractor::Create(dataSource);
return setDataSource_l(extractor);
}
1.3.2 根据DataSource 创建MediaExtractor
先看看 AwesomePlayer 的构造函数,里面有一行代码.
C++代码
AwesomePlayer::AwesomePlayer(){
//...
DataSource::RegisterDefaultSniffers();
//...
}
RegisterDefaultSniffers 注册了一些了媒体的MIME类型的探测函数.
C++代码
void DataSource::RegisterDefaultSniffers() {
RegisterSniffer(SniffMPEG4);
RegisterSniffer(SniffMatroska);
RegisterSniffer(SniffOgg);
RegisterSniffer(SniffWAV);
RegisterSniffer(SniffAMR);
RegisterSniffer(SniffMPEG2TS);
RegisterSniffer(SniffMP3);
RegisterSniffer(SniffTCCMedia); // TELECHIPS, SSG
}
这些探测用于判断媒体的MIME类型, 进而决定要创建什么样的MediaExtractor.
再回到 MediaExtractor::Create, MediaExtractor对象在这里创建. 下面代码有点长, 其实这段代码只是根据MIME类型创建Extractor的各个分支而已.
TCC在这个函数添加了一点代码, 用于创建自己的Extractor 对象.
C++代码
sp<MediaExtractor> MediaExtractor::Create(
const sp<DataSource> &source, const char *mime) {
sp<AMessage> meta;
String8 tmp;
if (mime == NULL) {
float confidence;
///调用之前注册的MIME探测函数判断MIME类型
if (!source->sniff(&tmp, &confidence, &meta)) {
return NULL;
}
mime = tmp.string();
}
if ((!strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_MPEG4)
|| !strcasecmp(mime, "audio/mp4"))
// TELECHIPS, SSG, only use MPEG4Extractor for HTTP source
&& (source->flags() & DataSource::kIsCachingDataSource)) {
return new MPEG4Extractor(source);
} else if (!strcasecmp(mime, MEDIA_MIMETYPE_AUDIO_MPEG)) {
return new MP3Extractor(source, meta);
} else if (!strcasecmp(mime, MEDIA_MIMETYPE_AUDIO_AMR_NB)
|| !strcasecmp(mime, MEDIA_MIMETYPE_AUDIO_AMR_WB)) {
return new AMRExtractor(source);
} else if (!strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_WAV)) {
return new WAVExtractor(source);
} else if (!strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_OGG)) {
return new OggExtractor(source);
// TELECHIPS, SSG
} else if (!strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_WEBM)) {
return new MatroskaExtractor(source);
} else if (!strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_MPEG2TS)) {
return new MPEG2TSExtractor(source);
}
// TELECHIPS, SSG
else if (!strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_FLAC)
|| !strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_APE)
|| !strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_MP2)
|| !strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_RA)
|| !strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_WMA)
|| !strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_AAC)
|| !strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_AVI)
|| !strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_MPEG4)
|| !strcasecmp(mime, "audio/mp4")
|| !strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_WMV)
|| !strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_ASF)
|| !strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_MATROSKA)
|| !strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_MPG)
|| !strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_MOV)
|| !strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_FLV)
|| !strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_DIVX)
|| !strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_RM)
|| !strcasecmp(mime, MEDIA_MIMETYPE_CONTAINER_TS)) {
///ITCCMediaExtractor是TCC专有MediaExtractor
///可惜他没有公开代码, 所以A/V分离失败的时候
///并不知道失败的原因
return new ITCCMediaExtractor(source);
}
return NULL;
}
(可以看到几乎所有封装格式都支持. 那为什么播放 Asf +H264的文件会失败呢? 只能怀疑ITCCMediaExtractor实现的有问题了)
1.3.3 根据MediaExtractor 做A/V分离
再看看 setDataSource_l(const sp<MediaExtractor> &extractor) , 这是A/V分离的最后步骤.
C++代码
status_t AwesomePlayer::setDataSource_l(const sp<MediaExtractor> &extractor) {
/// 从全部的Track中选取一个Video Track和一个AudioTrack
for (size_t i = 0; i < extractor->countTracks(); ++i) {
sp<MetaData> meta = extractor->getTrackMetaData(i);
const char *mime;
CHECK(meta->findCString(kKeyMIMEType, &mime));
if (!haveVideo && !strncasecmp(mime, "video/", 6)) {
setVideoSource(extractor->getTrack(i));
haveVideo = true;
} else if (!haveAudio && !strncasecmp(mime, "audio/", 6)) {
setAudioSource(extractor->getTrack(i));
haveAudio = true;
}
if (haveAudio && haveVideo) {
break;
}
}
/// Flags 标志这个媒体的一些属性:
/// CAN_SEEK_BACKWARD 是否能后退10秒
/// CAN_SEEK_FORWARD 是否能前进10秒
/// CAN_SEEK 能否Seek?
/// CAN_PAUSE 能否暂停
mExtractorFlags = extractor->flags();
return OK;
}
从这个函数可以看到MediaExtractor 需要实现的基本比较重要的接口 (这个几个接口都是纯虚函数, 可见Extractor的子类是一定要搞定它们的)
virtual size_t countTracks() = 0; /// 该媒体包含了几个Track?
virtual sp<MediaSource> getTrack(size_t index) = 0; /// 获取指定的Video/Audio Track, 可以看到一个Track本质上就是一个MediaSource.
virtual sp<MetaData> getTrackMetaData ( size_t index, uint32_t flags = 0) = 0; ///获取指定的Track的MetaData. 在AwesomePlayer 中, MetaData 实际上就是一块可以任意信息字段的叉烧, 字段类型可以是字符串或者是整形等等.这里Track的MetaData包含了Track的MIME类型. 这样AwesomePlayer就可以知道这个Track是Video 还是Audio的了.
总结: 至此, AwesomePlayer 就拥有VideoTrack 和AudioTrack了 (可能只有VideoTrack或者只有AudioTrack, 例如MP3). 接下来 音视频解码器 VideoSource/AudioSource 将从Video/Audio Track 中读取数据进行解码.
1.4 创建视频解码器
VideoTrack/AudioTrack 创建完毕之后, 紧接着就是创建 VideoSource了 (见 1.2.3). 看看initVideoDecoder
C++代码
status_t AwesomePlayer::initVideoDecoder(uint32_t flags) {
mVideoSource = OMXCodec::Create(
mClient.interface(), mVideoTrack->getFormat(),
false, // createEncoder
mVideoTrack,
NULL, flags);
/// ...
return mVideoSource != NULL ? OK : UNKNOWN_ERROR;
}
VideoSource 是由 OMXCodec::Create 创建的. 从OMXCodec::Create的参数可以看出创建一个视频解码器需要什么材料:
a. OMXClient. 用于跟OMX IL 通讯. 假如最后用的是OMXCodec 也不是SoftCodec的话, 需要用到它.
b. mVideoTrack->getFormat (). getFormat返回包含该video track格式信息的MetaData.
c. mVideoTrack. 如前面1.3.3 说的. 解码器会从 Video Track 中读取数据进行解码.
1.4.1 OMXCodec::Create
C++代码
sp<MediaSource> OMXCodec::Create(
const sp<IOMX> &omx,
const sp<MetaData> &meta, bool createEncoder,
const sp<MediaSource> &source,
const char *matchComponentName,
uint32_t flags) {
/// 获取MIME类型
const char *mime;
bool success = meta->findCString(kKeyMIMEType, &mime);
/// 根据MIME找出可能匹配的Codec
Vector<String8> matchingCodecs;
findMatchingCodecs(
mime, createEncoder, matchComponentName, flags, &matchingCodecs);
IOMX::node_id node = 0;
/// 对每一种可能匹配的Codec, 尝试申请Codec
const char *componentName;
for (size_t i = 0; i < matchingCodecs.size(); ++i) {
componentName = matchingCodecs[i].string();
/// 尝试申请软Codec
sp<MediaSource> softwareCodec = createEncoder?
InstantiateSoftwareEncoder(componentName, source, meta):
InstantiateSoftwareCodec(componentName, source);
if (softwareCodec != NULL) {
return softwareCodec;
}
/// 尝试申请OMXCodec
status_t err = omx->allocateNode(componentName, observer, &node);
if (err == OK) {
sp<OMXCodec> codec = new OMXCodec(
omx, node, quirks,
createEncoder, mime, componentName,
source);
/// 配置申请出来的OMXCodec
err = codec->configureCodec(meta, flags);
if (err == OK) {
return codec;
}
}
}
return NULL;
}
1.4.2 OMXCodec::findMatchingCodecs 找出可能匹配的Codec
findMatchingCodecs 根据传入的MIME 从kDecoderInfo 中找出MIME对于的Codec名 (一种MIME可能对应多种Codec)
C++代码
void
OMXCodec::findMatchingCodecs(
const char *mime,
bool createEncoder, const char *matchComponentName,
uint32_t flags,
Vector<String8> *matchingCodecs) {
for (int index = 0;; ++index) {
const char *componentName;
componentName = GetCodec(
kDecoderInfo,
sizeof(kDecoderInfo) / sizeof(kDecoderInfo[0]),
mime, index);
matchingCodecs->push(String8(componentName));
}
}
看看 kDecoderInfo 里面包含了什么Codec吧, 有点长.
C++代码
static const CodecInfo kDecoderInfo[] = {
{ MEDIA_MIMETYPE_IMAGE_JPEG, "OMX.TI.JPEG.decode" },
// { MEDIA_MIMETYPE_AUDIO_MPEG, "OMX.TI.MP3.decode" },
{ MEDIA_MIMETYPE_AUDIO_MPEG, "MP3Decoder" },
// { MEDIA_MIMETYPE_AUDIO_MPEG, "OMX.PV.mp3dec" },
// { MEDIA_MIMETYPE_AUDIO_AMR_NB, "OMX.TI.AMR.decode" },
{ MEDIA_MIMETYPE_AUDIO_AMR_NB, "AMRNBDecoder" },
// { MEDIA_MIMETYPE_AUDIO_AMR_NB, "OMX.PV.amrdec" },
{ MEDIA_MIMETYPE_AUDIO_AMR_WB, "OMX.TI.WBAMR.decode" },
{ MEDIA_MIMETYPE_AUDIO_AMR_WB, "AMRWBDecoder" },
// { MEDIA_MIMETYPE_AUDIO_AMR_WB, "OMX.PV.amrdec" },
{ MEDIA_MIMETYPE_AUDIO_AAC, "OMX.TI.AAC.decode" },
{ MEDIA_MIMETYPE_AUDIO_AAC, "AACDecoder" },
// { MEDIA_MIMETYPE_AUDIO_AAC, "OMX.PV.aacdec" },
{ MEDIA_MIMETYPE_AUDIO_G711_ALAW, "G711Decoder" },
{ MEDIA_MIMETYPE_AUDIO_G711_MLAW, "G711Decoder" },
{ MEDIA_MIMETYPE_VIDEO_MPEG4, "OMX.qcom.7x30.video.decoder.mpeg4" },
{ MEDIA_MIMETYPE_VIDEO_MPEG4, "OMX.qcom.video.decoder.mpeg4" },
{ MEDIA_MIMETYPE_VIDEO_MPEG4, "OMX.TI.Video.Decoder" },
{ MEDIA_MIMETYPE_VIDEO_MPEG4, "OMX.SEC.MPEG4.Decoder" },
{ MEDIA_MIMETYPE_VIDEO_MPEG4, "OMX.TCC.mpeg4dec" },
{ MEDIA_MIMETYPE_VIDEO_MPEG4, "M4vH263Decoder" },
// { MEDIA_MIMETYPE_VIDEO_MPEG4, "OMX.PV.mpeg4dec" },
{ MEDIA_MIMETYPE_VIDEO_H263, "OMX.qcom.7x30.video.decoder.h263" },
{ MEDIA_MIMETYPE_VIDEO_H263, "OMX.qcom.video.decoder.h263" },
{ MEDIA_MIMETYPE_VIDEO_H263, "OMX.SEC.H263.Decoder" },
{ MEDIA_MIMETYPE_VIDEO_H263, "OMX.TCC.h263dec" },
{ MEDIA_MIMETYPE_VIDEO_H263, "M4vH263Decoder" },
// { MEDIA_MIMETYPE_VIDEO_H263, "OMX.PV.h263dec" },
{ MEDIA_MIMETYPE_VIDEO_AVC, "OMX.qcom.7x30.video.decoder.avc" },
{ MEDIA_MIMETYPE_VIDEO_AVC, "OMX.qcom.video.decoder.avc" },
{ MEDIA_MIMETYPE_VIDEO_AVC, "OMX.TI.Video.Decoder" },
{ MEDIA_MIMETYPE_VIDEO_AVC, "OMX.SEC.AVC.Decoder" },
{ MEDIA_MIMETYPE_VIDEO_AVC, "OMX.TCC.avcdec" },
{ MEDIA_MIMETYPE_VIDEO_AVC, "AVCDecoder" },
// { MEDIA_MIMETYPE_VIDEO_AVC, "OMX.PV.avcdec" },
{ MEDIA_MIMETYPE_AUDIO_VORBIS, "VorbisDecoder" },
{ MEDIA_MIMETYPE_VIDEO_VPX, "VPXDecoder" },
// TELECHIPS, SSG
{ MEDIA_MIMETYPE_AUDIO_MPEG_TCC, "OMX.TCC.mp3dec" },
{ MEDIA_MIMETYPE_AUDIO_AAC_TCC, "OMX.TCC.aacdec" },
{ MEDIA_MIMETYPE_AUDIO_VORBIS_TCC, "OMX.TCC.vorbisdec" },
{ MEDIA_MIMETYPE_AUDIO_WMA, "OMX.TCC.wmadec" },
{ MEDIA_MIMETYPE_AUDIO_AC3, "OMX.TCC.ac3dec" },
{ MEDIA_MIMETYPE_AUDIO_RA, "OMX.TCC.radec" },
{ MEDIA_MIMETYPE_AUDIO_FLAC, "OMX.TCC.flacdec" },
{ MEDIA_MIMETYPE_AUDIO_APE, "OMX.TCC.apedec" },
{ MEDIA_MIMETYPE_AUDIO_MP2, "OMX.TCC.mp2dec" },
{ MEDIA_MIMETYPE_AUDIO_PCM, "OMX.TCC.pcmdec" },
{ MEDIA_MIMETYPE_AUDIO_DTS, "OMX.TCC.dtsdec" },
{ MEDIA_MIMETYPE_VIDEO_VC1, "OMX.TCC.wmvdec" },
{ MEDIA_MIMETYPE_VIDEO_WMV12, "OMX.TCC.wmv12dec" },
{ MEDIA_MIMETYPE_VIDEO_RV, "OMX.TCC.rvdec" },
{ MEDIA_MIMETYPE_VIDEO_DIVX, "OMX.TCC.divxdec" },
{ MEDIA_MIMETYPE_VIDEO_MPEG2, "OMX.TCC.mpeg2dec" },
{ MEDIA_MIMETYPE_VIDEO_MJPEG, "OMX.TCC.mjpegdec" },
{ MEDIA_MIMETYPE_VIDEO_FLV1, "OMX.TCC.flv1dec" },
};
可以看到MPEG4就对应了6种Codec.
1.4.3 InstantiateSoftwareCodec 创建软编码器
InstantiateSoftwareCodec 从 kFactoryInfo (软编码器列表) 挑挑看有没有. 有的话就创建一个软编码器. 看看kFactoryInfo 里面有哪些软编码器
C++代码
static const FactoryInfo kFactoryInfo[] = {
FACTORY_REF(MP3Decoder)
FACTORY_REF(AMRNBDecoder)
FACTORY_REF(AMRWBDecoder)
FACTORY_REF(AACDecoder)
FACTORY_REF(AVCDecoder)
FACTORY_REF(G711Decoder)
FACTORY_REF(M4vH263Decoder)
FACTORY_REF(VorbisDecoder)
FACTORY_REF(VPXDecoder)
};
1.4.4 编码器名称的一点说明
OMX.XXX.YYY
中间的XXX是厂商名称. 如OMX.TI.Video.Decoder 就是TI 芯片的硬视频解码器. 而 OMX.TCC.avcdec 则是TCC的AVC 视频解码器. 没有OMX开头的,说明是软解码器.
以AVC为例:
{ MEDIA_MIMETYPE_VIDEO_AVC, "OMX.qcom.7x30.video.decoder.avc" },
{ MEDIA_MIMETYPE_VIDEO_AVC, "OMX.qcom.video.decoder.avc" },
{ MEDIA_MIMETYPE_VIDEO_AVC, "OMX.TI.Video.Decoder" },
{ MEDIA_MIMETYPE_VIDEO_AVC, "OMX.SEC.AVC.Decoder" },
{ MEDIA_MIMETYPE_VIDEO_AVC, "OMX.TCC.avcdec" },
{ MEDIA_MIMETYPE_VIDEO_AVC, "AVCDecoder" },
可以看到软解码器被放到最后. 这样的话后面尝试申请解码器的时候便会优先申请硬Codec. 除非硬Codec不存在.
1.4.5 创建OMXCodec
申请OMXCodec比较简单, 调用IOMX::allocateNode 申请即可. 编码器的名称例如 OMX.TCC.avcdec 即是OMX 组件(Component)的名称
IOMX::node_id node = 0;
omx->allocateNode(componentName, observer, &node); /// 这个时候就已经是和OMX IL 层进行通讯了, 虽然是进程间通讯. 但是封装成这个样子,我们也看不出来了, 和本地调用一样.
sp<OMXCodec> codec = new OMXCodec(
omx, node, quirks,
createEncoder, mime, componentName,
source);
codec->configureCodec(meta, flags); /// codec 创建出来后, 要配置一下codec.
如果进去看看configureCodec的代码, 可以看到实际上是调用 IOMX::setParameter, 和IOMX::setConfig. 同样,也是属于IPC, 因为是和OMX IL 通讯.
总结: 理想的情况下, 调用OMXCodec::Create 应该返回一个OMXCodec 对象而不是软解对象. Android 默认的策略也是优先创建硬解码器. 至此AwesomePlayer 通过OMXCodec 进而跟OML IL 打交道. 其中关键的对象为IOMX和IOMX::node_id. node_id 相当于一个OMX Component的句柄. 音频解码器的创建过程跟视频解码器的创建过程几乎一样, 所以不分析了.
1.5 解封装, 解码
看回 1.2.5, 当Video Event 被触发时, AwesomePlayer::onVideoEvent 会被调用. onVideoEvent 会尝试调用 mVideoSource.read 读取视频图像,然后将视频图像交给AwesomeRenderer进行渲染.
如果采用硬解码的话 mVideoSource 实际是就是一个OMXCodec 对象. 下一篇分析下 OMXCodec.read 干了什么事.