题目连接:http://acm.sgu.ru/problem.php?contest=0&problem=275
题意:给n个数字,从中选取某些数字进行XOR操作,使得值最大。
肯定要把每个数字转化为二进制的形式。在XOR操作的时候,首先优先高位,如果高位能取得 1 ,那么就一定要取 1 ,这其中肯定有很多情况,我们并不要求出每种情况去扩展,因为状态太多了,只要判断有没有满足的情况就可以了。这里就是异或高斯消元了。假设现在是判断第 i 位,那么首先把A[i][n]赋值为 1,如果在当前方程下有解,那么继续地位,否则把A[i][n]赋值为0,继续低位。
1 //STATUS:C++_AC_15MS_943KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 #include <map> 23 using namespace std; 24 //using namespace __gnu_cxx; 25 //define 26 #define pii pair<int,int> 27 #define mem(a,b) memset(a,b,sizeof(a)) 28 #define lson l,mid,rt<<1 29 #define rson mid+1,r,rt<<1|1 30 #define PI acos(-1.0) 31 //typedef 32 typedef long long LL; 33 typedef unsigned long long ULL; 34 //const 35 const int N=110; 36 const int INF=0x3f3f3f3f; 37 const int MOD=100000,STA=8000010; 38 const LL LNF=1LL<<60; 39 const double EPS=1e-8; 40 const double OO=1e15; 41 const int dx[4]={-1,0,1,0}; 42 const int dy[4]={0,1,0,-1}; 43 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 44 //Daily Use ... 45 inline int sign(double x){return (x>EPS)-(x<-EPS);} 46 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 47 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 48 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 49 template<class T> inline T Min(T a,T b){return a<b?a:b;} 50 template<class T> inline T Max(T a,T b){return a>b?a:b;} 51 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 52 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 53 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 54 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 55 //End 56 57 int A[N][N]; 58 LL num[N]; 59 int n; 60 61 int gauss(int n,int m) 62 { 63 int i,j,k,cnt,row; 64 for(i=row=0;i<n;i++){ 65 if(!A[row][i]){ 66 for(j=row+1;j<m;j++){ 67 if(A[j][i]){ 68 for(k=i;k<=n;k++)swap(A[row][k],A[j][k]); 69 break; 70 } 71 } 72 } 73 if(A[row][i]!=1)continue; //保证为严格的阶梯矩阵 74 for(j=0;j<m;j++){ //从0开始,高斯约当消元 75 if(j!=row && A[j][i]){ 76 for(k=i;k<=n;k++) 77 A[j][k]^=A[row][k]; 78 } 79 } 80 row++; 81 } 82 for(i=m-1;i>=row;i--) 83 if(A[i][n])return 0; //无解 84 return 1; 85 } 86 87 int main() 88 { 89 // freopen("in.txt","r",stdin); 90 int i,j; 91 LL ans; 92 while(~scanf("%d",&n)) 93 { 94 for(i=0;i<n;i++) 95 scanf("%I64d",&num[i]); 96 ans=0; 97 for(i=60;i>=0;i--){ 98 for(j=0;j<n;j++) 99 A[60-i][j]=(num[j]&((LL)1<<i))?1:0; 100 A[60-i][n]=1; 101 102 if(gauss(n,60-i+1))ans|=(LL)1<<i; 103 else A[60-i][n]=0; 104 } 105 106 printf("%I64d\n",ans); 107 } 108 return 0; 109 }