NO.1 单例模式的应用场景
单例模式(Singleton Pattern)是指确保一个类在任何情况下都绝对只有一个实例,并提供一个全局访问点。单例模式是创建型模式。单例模式在现实生活中应用也非常广泛。例如公司 CEO、部门经理等。在 J2EE 标准中,ServletContext、ServletContextConfig 等;在 Spring 框架应用中 ApplicationContext;数据库的连接池也都是单例形式。
NO.2 饿汉式单例
先来看单例模式的类结构图:
饿汉式单例是在类加载的时候就立即初始化,并且创建单例对象。绝对线程安全,在线程还没出现以前就是实例化了,不可能存在访问安全问题。
优点:没有加任何的锁、执行效率比较高,在用户体验上来说,比懒汉式更好。
缺点:类加载的时候就初始化,不管用与不用都占着空间,浪费了内存,有可能占着茅坑不拉屎。
Spring 中 IOC 容器 ApplicationContext 本身就是典型的饿汉式单例。接下来看一段代码:
public class HungrySingleton { //先静态、后动态 //先属性、后方法 //先上后下 private static final HungrySingleton hungrySingleton = new HungrySingleton(); private HungrySingleton(){} public static HungrySingleton getInstance(){ return hungrySingleton; } }
还有另外一种写法,利用静态代码块的机制:
//饿汉式静态块单例 public class HungryStaticSingleton { private static final HungryStaticSingleton hungrySingleton; static { hungrySingleton = new HungryStaticSingleton(); } private HungryStaticSingleton(){} public static HungryStaticSingleton getInstance(){ return hungrySingleton; } }
这两种写法都非常的简单,也非常好理解,饿汉式适用在单例对象较少的情况。下面我们来看性能更优的写法。
NO.3 懒汉式单例
懒汉式单例的特点是:被外部类调用的时候内部类才会加载,下面看懒汉式单例的简单实现 LazySimpleSingleton:
//懒汉式单例 //在外部需要使用的时候才进行实例化 public class LazySimpleSingleton { private LazySimpleSingleton(){} //静态块,公共内存区域 private static LazySimpleSingleton lazy = null; public static LazySimpleSingleton getInstance(){ if(lazy == null){ lazy = new LazySimpleSingleton(); } return lazy; } }
然后写一个线程类 ExectorThread 类:
public class ExectorThread implements Runnable{ @Override public void run() { LazySimpleSingleton singleton = LazySimpleSingleton.getInstance(); System.out.println(Thread.currentThread().getName() + ":" + singleton); } }
客户端测试代码:
public class LazySimpleSingletonTest { public static void main(String[] args) { Thread t1 = new Thread(new ExectorThread()); Thread t2 = new Thread(new ExectorThread()); t1.start(); t2.start(); System.out.println("End"); } }
运行结果:
一定几率出现创建两个不同结果的情况,意味着上面的单例存在线程安全隐患。现在我们用调试运行再具体看一下,教给大家一个新技能,用线程模式调试,手动控制线程的执行顺序来跟踪内存的变化状态。先给 ExectorThread 类打上断点:
右键点击断点,切换为 Thread 模式,如下图:
然后,给 LazySimpleSingleton 类打上断点,同样标记为 Thread 模式:
切回到客户端测试代码,同样也打上断点,同时改为 Thread 模式,如下图:
开始 debug 之后,会看到 debug 控制台可以自由切换 Thread 的运行状态:
通过不断切换线程,并观测其内存状态,我们发现在线程环境下 LazySimpleSingleton被实例化了两次。有时,我们得到的运行结果可能是相同的两个对象,实际上是被后面执行的线程覆盖了,我们看到了一个假象,线程安全隐患依旧存在。那么,我们如何来优化代码,使得懒汉式单例在线程环境下安全呢?来看下面的代码,给 getInstance()加上 synchronized 关键字,是这个方法变成线程同步方法:
public class LazySimpleSingleton { private LazySimpleSingleton(){} //静态块,公共内存区域 private static LazySimpleSingleton lazy = null; public synchronized static LazySimpleSingleton getInstance(){ if(lazy == null){ lazy = new LazySimpleSingleton(); } return lazy; } }
这时候,我们再来调试。当我们将其中一个线程执行并调用 getInstance()方法时,另一个线程在调用 getInstance()方法,线程的状态由 RUNNING 变成了 MONITOR,出现阻塞。直到第一个线程执行完,第二个线程才恢复 RUNNING 状态继续调用 getInstance()方法。如下图所示:
完美的展现了 synchronized 监视锁的运行状态,线程安全的问题便解决了。但是,用synchronized 加锁,在线程数量比较多情况下,如果 CPU 分配压力上升,会导致大批量线程出现阻塞,从而导致程序运行性能大幅下降。那么,有没有一种更好的方式,既兼顾线程安全又提升程序性能呢?答案是肯定的。我们来看双重检查锁的单例模式:
public class LazyDoubleCheckSingleton { private volatile static LazyDoubleCheckSingleton lazy = null; private LazyDoubleCheckSingleton(){} public static LazyDoubleCheckSingleton getInstance(){ if(lazy == null){ synchronized (LazyDoubleCheckSingleton.class){ if(lazy == null){ lazy = new LazyDoubleCheckSingleton(); //1.分配内存给这个对象 //2.初始化对象 //3.设置 lazy 指向刚分配的内存地址 } } } return lazy; } }
现在,我们来断点调试:
当第一个线程调用 getInstance()方法时,第二个线程也可以调用 getInstance()。当第一个线程执行到 synchronized 时会上锁,第二个线程就会变成 MONITOR 状态,出现阻
塞。此时,阻塞并不是基于整个 LazySimpleSingleton 类的阻塞,而是在 getInstance()方法内部阻塞,只要逻辑不是太复杂,对于调用者而言感知不到。但是,用到 synchronized 关键字,总归是要上锁,对程序性能还是存在一定影响的。难道就真的没有更好的方案吗?当然是有的。我们可以从类初始化角度来考虑,看下面的代码,采用静态内部类的方式:
//这种形式兼顾饿汉式的内存浪费,也兼顾synchronized性能问题 //完美地屏蔽了这两个缺点 public class LazyInnerClassSingleton { //默认使用LazyInnerClassGeneral的时候,会先初始化内部类 //如果没使用的话,内部类是不加载的 private LazyInnerClassSingleton(){} //每一个关键字都不是多余的 //static 是为了使单例的空间共享 //保证这个方法不会被重写,重载 public static final LazyInnerClassSingleton getInstance(){ //在返回结果以前,一定会先加载内部类 return LazyHolder.LAZY; } //默认不加载 private static class LazyHolder{ private static final LazyInnerClassSingleton LAZY = new LazyInnerClassSingleton(); } }
这种形式兼顾饿汉式的内存浪费,也兼顾 synchronized 性能问题。内部类一定是要在方
法调用之前初始化,巧妙地避免了线程安全问题。由于这种方式比较简单,我们就不带
大家一步一步调试了。
NO.4 反射破坏单例
大家有没有发现,上面介绍的单例模式的构造方法除了加上 private 以外,没有做任何处理。如果我们使用反射来调用其构造方法,然后,再调用 getInstance()方法,应该就会两个不同的实例。现在来看一段测试代码,以 LazyInnerClassSingleton 为例:
public class LazyInnerClassSingletonTest { public static void main(String[] args) { try{ //很无聊的情况下,进行破坏 Class> clazz = LazyInnerClassSingleton.class; //通过反射拿到私有的构造方法 Constructor c = clazz.getDeclaredConstructor(null); //强制访问,强吻,不愿意也要吻 c.setAccessible(true); //暴力初始化 Object o1 = c.newInstance(); //调用了两次构造方法,相当于new了两次 //犯了原则性问题, Object o2 = c.newInstance(); System.out.println(o1 == o2); // Object o2 = c.newInstance(); }catch (Exception e){ e.printStackTrace(); } } }
运行结果如下:
显然,是创建了两个不同的实例。现在,我们在其构造方法中做一些限制,一旦出现多次重复创建,则直接抛出异常。来看优化后的代码:
码: //这种形式兼顾饿汉式的内存浪费,也兼顾synchronized性能问题 //完美地屏蔽了这两个缺点 //史上最牛B的单例模式的实现方式 public class LazyInnerClassSingleton { //默认使用LazyInnerClassGeneral的时候,会先初始化内部类 //如果没使用的话,内部类是不加载的 private LazyInnerClassSingleton(){ if(LazyHolder.LAZY != null){ throw new RuntimeException("不允许创建多个实例"); } } //每一个关键字都不是多余的 //static 是为了使单例的空间共享 //保证这个方法不会被重写,重载 public static final LazyInnerClassSingleton getInstance(){ //在返回结果以前,一定会先加载内部类 return LazyHolder.LAZY; } //默认不加载 private static class LazyHolder{ private static final LazyInnerClassSingleton LAZY = new LazyInnerClassSingleton(); } }
再运行测试代码,会得到以下结果:
至此,史上最牛 B 的单例写法便大功告成。
NO.5 序列化破坏单例
当我们将一个单例对象创建好,有时候需要将对象序列化然后写入到磁盘,下次使用时再从磁盘中读取到对象,反序列化转化为内存对象。反序列化后的对象会重新分配内存,即重新创建。那如果序列化的目标的对象为单例对象,就违背了单例模式的初衷,相当于破坏了单例,来看一段代码:
//反序列化时导致单例破坏 public class SeriableSingleton implements Serializable { //序列化就是说把内存中的状态通过转换成字节码的形式 //从而转换一个 IO 流,写入到其他地方(可以是磁盘、网络 IO) //内存中状态给永久保存下来了 //反序列化 //讲已经持久化的字节码内容,转换为 IO 流 //通过 IO 流的读取,进而将读取的内容转换为 Java 对象 //在转换过程中会重新创建对象 new public final static SeriableSingleton INSTANCE = new SeriableSingleton(); private SeriableSingleton(){} public static SeriableSingleton getInstance(){ return INSTANCE; } }
运行结果:
运行结果中,可以看出,反序列化后的对象和手动创建的对象是不一致的,实例化了两次,违背了单例的设计初衷。那么,我们如何保证序列化的情况下也能够实现单例?其实很简单,只需要增加 readResolve()方法即可。来看优化代码:
public class SeriableSingleton implements Serializable { //序列化就是说把内存中的状态通过转换成字节码的形式 //从而转换一个IO流,写入到其他地方(可以是磁盘、网络IO) //内存中状态给永久保存下来了 //反序列化 //讲已经持久化的字节码内容,转换为IO流 //通过IO流的读取,进而将读取的内容转换为Java对象 //在转换过程中会重新创建对象new public final static SeriableSingleton INSTANCE = new SeriableSingleton(); private SeriableSingleton(){} public static SeriableSingleton getInstance(){ return INSTANCE; } private Object readResolve(){ return INSTANCE; } }
再看运行结果:
大家一定会关心这是什么原因呢?为什么要这样写?看上去很神奇的样子,也让人有些费 解 。不 如 , 我 们 一 起 来 看 看 JDK 的 源 码 实 现 以 一 清 二 楚 了 。我 们 进 入ObjectInputStream 类的 readObject()方法,代码如下:
public final Object readObject() throws IOException, ClassNotFoundException { if (enableOverride) { return readObjectOverride(); } // if nested read, passHandle contains handle of enclosing object int outerHandle = passHandle; try { Object obj = readObject0(false); handles.markDependency(outerHandle, passHandle); ClassNotFoundException ex = handles.lookupException(passHandle); if (ex != null) { throw ex; } if (depth == 0) { vlist.doCallbacks(); } return obj; } finally { passHandle = outerHandle; if (closed && depth == 0) { clear(); } } }
我们发现在readObject中又调用了我们重写的readObject0()方法。进入readObject0()方法,代码如下:
private Object readObject0(boolean unshared) throws IOException { ... case TC_OBJECT: return checkResolve(readOrdinaryObject(unshared)); ... }
我们看到 TC_OBJECTD 中判断,调用了 ObjectInputStream 的 readOrdinaryObject()方法,我们继续进入看源码:
private Object readOrdinaryObject(boolean unshared) throws IOException { if (bin.readByte() != TC_OBJECT) { throw new InternalError(); } ObjectStreamClass desc = readClassDesc(false); desc.checkDeserialize(); Class> cl = desc.forClass(); if (cl == String.class || cl == Class.class || cl == ObjectStreamClass.class) { throw new InvalidClassException("invalid class descriptor"); } Object obj; try { obj = desc.isInstantiable() ? desc.newInstance() : null; } catch (Exception ex) { throw (IOException) new InvalidClassException( desc.forClass().getName(), "unable to create instance").initCause(ex); } ... return obj; }
发现调用了 ObjectStreamClass 的 isInstantiable()方法,而 isInstantiable()里面的代码如下:
boolean isInstantiable() { requireInitialized(); return (cons != null); }
代码非常简单,就是判断一下构造方法是否为空,构造方法不为空就返回 true。意味着,只要有无参构造方法就会实例化。这时候,其实还没有找到为什么加上 readResolve()方法就避免了单例被破坏的真正原因。我再回到ObjectInputStream 的 readOrdinaryObject()方法继续往下看:
private Object readOrdinaryObject(boolean unshared) throws IOException { if (bin.readByte() != TC_OBJECT) { throw new InternalError(); } ObjectStreamClass desc = readClassDesc(false); desc.checkDeserialize(); Class> cl = desc.forClass(); if (cl == String.class || cl == Class.class || cl == ObjectStreamClass.class) { throw new InvalidClassException("invalid class descriptor"); } Object obj; try { obj = desc.isInstantiable() ? desc.newInstance() : null; } catch (Exception ex) { throw (IOException) new InvalidClassException( desc.forClass().getName(), "unable to create instance").initCause(ex); } ... if (obj != null && handles.lookupException(passHandle) == null && desc.hasReadResolveMethod()) { Object rep = desc.invokeReadResolve(obj); if (unshared && rep.getClass().isArray()) { rep = cloneArray(rep); } if (rep != obj) { // Filter the replacement object if (rep != null) { if (rep.getClass().isArray()) { filterCheck(rep.getClass(), Array.getLength(rep)); } else { filterCheck(rep.getClass(), -1); } } handles.setObject(passHandle, obj = rep); } } return obj; }
判断无参构造方法是否存在之后,又调用了 hasReadResolveMethod()方法,来看代码:
boolean hasReadResolveMethod() { requireInitialized(); return (readResolveMethod != null); }
逻辑非常简单,就是判断 readResolveMethod 是否为空,不为空就返回 true。那么readResolveMethod 是在哪里赋值的呢?通过全局查找找到了赋值代码在私有方法ObjectStreamClass()方法中给 readResolveMethod 进行赋值,来看代码:
readResolveMethod = getInheritableMethod( cl, "readResolve", null, Object.class);
上面的逻辑其实就是通过反射找到一个无参的 readResolve()方法,并且保存下来。现在
再 回 到 ObjectInputStream的 readOrdinaryObject() 方 法 继 续 往 下 看 , 如 果
readResolve()存在则调用 invokeReadResolve()方法,来看代码:
Object invokeReadResolve(Object obj) throws IOException, UnsupportedOperationException { requireInitialized(); if (readResolveMethod != null) { try { return readResolveMethod.invoke(obj, (Object[]) null); } catch (InvocationTargetException ex) { Throwable th = ex.getTargetException(); if (th instanceof ObjectStreamException) { throw (ObjectStreamException) th; } else { throwMiscException(th); throw new InternalError(th); // never reached } } catch (IllegalAccessException ex) { // should not occur, as access checks have been suppressed throw new InternalError(ex); } } else { throw new UnsupportedOperationException(); } }
我们可以看到在invokeReadResolve()方法中用反射调用了readResolveMethod方法。通过 JDK 源码分析我们可以看出,虽然,增加 readResolve()方法返回实例,解决了单例被破坏的问题。但是,我们通过分析源码以及调试,我们可以看到实际上实例化了两次,只不过新创建的对象没有被返回而已。那如果,创建对象的动作发生频率增大,就意味着内存分配开销也就随之增大,难道真的就没办法从根本上解决问题吗?下面我们来注册式单例也许能帮助到你
NO.6 注册式单例
注册式单例又称为登记式单例,就是将每一个实例都登记到某一个地方,使用唯一的标识获取实例。注册式单例有两种写法:一种为容器缓存,一种为枚举登记。先来看枚举式单例的写法,来看代码,创建 EnumSingleton 类:
public enum EnumSingleton { INSTANCE; private Object data; public Object getData() { return data; } public void setData(Object data) { this.data = data; } public static EnumSingleton getInstance(){ return INSTANCE; } }
来看测试代码:
public class EnumSingletonTest { public static void main(String[] args) { try { EnumSingleton instance1 = null; EnumSingleton instance2 = EnumSingleton.getInstance(); instance2.setData(new Object()); FileOutputStream fos = new FileOutputStream("EnumSingleton.obj"); ObjectOutputStream oos = new ObjectOutputStream(fos); oos.writeObject(instance2); oos.flush(); oos.close(); FileInputStream fis = new FileInputStream("EnumSingleton.obj"); ObjectInputStream ois = new ObjectInputStream(fis); instance1 = (EnumSingleton) ois.readObject(); ois.close(); System.out.println(instance1.getData()); System.out.println(instance2.getData()); System.out.println(instance1.getData() == instance2.getData()); }catch (Exception e){ e.printStackTrace(); } } }
运行结果:
没有做任何处理,我们发现运行结果和我们预期的一样。那么枚举式单例如此神奇,的神秘之处在哪里体现呢?下面我们通过分析源码来揭开它的神秘面纱。下载一个非常好用的 Java 反编译工具 Jad(下载地址:https://varaneckas.com/jad/),解压后配置好环境变量(这里不做详细介绍),就可以使用命令行调用了。找到工程所在的 class 目录,复制 EnumSingleton.class 所在的路径,如下图:
然后切回到命令行,切换到工程所在的 Class 目录,输入命令 jad 后面输入复制好的路径,我们会在 Class 目录下会多一个 EnumSingleton.jad 文件。打开 EnumSingleton.jad文件我们惊奇又巧妙地发现有如下代码:
static { INSTANCE = new EnumSingleton("INSTANCE", 0); $VALUES = (new EnumSingleton[] { INSTANCE }); }
原来,枚举式单例在静态代码块中就给 INSTANCE 进行了赋值,是饿汉式单例的实现。至此,我们还可以试想,序列化我们能否破坏枚举式单例呢?我们不妨再来看一下 JDK源码,还是回到 ObjectInputStream 的 readObject0()方法:
private Object readObject0(boolean unshared) throws IOException { ... case TC_ENUM: return checkResolve(readEnum(unshared)); ... }
我们看到在 readObject0()中调用了 readEnum()方法,来看 readEnum()中代码实现:
private Enum> readEnum(boolean unshared) throws IOException { if (bin.readByte() != TC_ENUM) { throw new InternalError(); } ObjectStreamClass desc = readClassDesc(false); if (!desc.isEnum()) { throw new InvalidClassException("non-enum class: " + desc); } int enumHandle = handles.assign(unshared ? unsharedMarker : null); ClassNotFoundException resolveEx = desc.getResolveException(); if (resolveEx != null) { handles.markException(enumHandle, resolveEx); } String name = readString(false); Enum> result = null; Class> cl = desc.forClass(); if (cl != null) { try { @SuppressWarnings("unchecked") Enum> en = Enum.valueOf((Class)cl, name); result = en; } catch (IllegalArgumentException ex) { throw (IOException) new InvalidObjectException( "enum constant " + name + " does not exist in " + cl).initCause(ex); } if (!unshared) { handles.setObject(enumHandle, result); } } handles.finish(enumHandle); passHandle = enumHandle; return result; }
我们发现枚举类型其实通过类名和 Class 对象类找到一个唯一的枚举对象。因此,枚举对象不可能被类加载器加载多次。那么反射是否能破坏枚举式单例呢?来看一段测 试代码:
public static void main(String[] args) { try { Class clazz = EnumSingleton.class; Constructor c = clazz.getDeclaredConstructor(); c.newInstance(); }catch (Exception e){ e.printStackTrace(); } }
运行结果:
报的是 java.lang.NoSuchMethodException 异常,意思是没找到无参的构造方法。这时候,我们打开 java.lang.Enum 的源码代码,查看它的构造方法,只有一个 protected的构造方法,代码如下:
protected Enum(String name, int ordinal) { this.name = name; this.ordinal = ordinal; }
那我们再来做一个这样的测试:
public static void main(String[] args) { try { Class clazz = EnumSingleton.class; Constructor c = clazz.getDeclaredConstructor(String.class,int.class); c.setAccessible(true); EnumSingleton enumSingleton = (EnumSingleton)c.newInstance("Tom",666); }catch (Exception e){ e.printStackTrace(); } }
运行结果:
这时错误已经非常明显了,告诉我们 Cannot reflectively create enum objects,不能用反射来创建枚举类型。还是习惯性地想来看看 JDK 源码,进入 Constructor 的newInstance()方法:
public T newInstance(Object ... initargs) throws InstantiationException, IllegalAccessException, IllegalArgumentException, InvocationTargetException { if (!override) { if (!Reflection.quickCheckMemberAccess(clazz, modifiers)) { Class> caller = Reflection.getCallerClass(); checkAccess(caller, clazz, null, modifiers); } } if ((clazz.getModifiers() & Modifier.ENUM) != 0) throw new IllegalArgumentException("Cannot reflectively create enum objects"); ConstructorAccessor ca = constructorAccessor; // read volatile if (ca == null) { ca = acquireConstructorAccessor(); } @SuppressWarnings("unchecked") T inst = (T) ca.newInstance(initargs); return inst; }
在 newInstance()方法中做了强制性的判断,如果修饰符是 Modifier.ENUM 枚举类型,直接抛出异常。到这为止,我们是不是已经非常清晰明了呢?枚举式单例也是《EffectiveJava》书中推荐的一种单例实现写法。在 JDK 枚举的语法特殊性,以及反射也为枚举保驾护航,让枚举式单例成为一种比较优雅的实现。
接下来看注册式单例还有另一种写法,容器缓存的写法,创建 ContainerSingleton 类:
public class ContainerSingleton { private ContainerSingleton(){} private static Mapioc = new ConcurrentHashMap (); public static Object getBean(String className){ synchronized (ioc) { if (!ioc.containsKey(className)) { Object obj = null; try { obj = Class.forName(className).newInstance(); ioc.put(className, obj); } catch (Exception e) { e.printStackTrace(); } return obj; } else { return ioc.get(className); } } } }
容器式写法适用于创建实例非常多的情况,便于管理。但是,是非线程安全的。到此,注册式单例介绍完毕。我们还可以来看看 Spring 中的容器式单例的实现代码:
public abstract class AbstractAutowireCapableBeanFactory extends AbstractBeanFactory implements AutowireCapableBeanFactory { /** Cache of unfinished FactoryBean instances: FactoryBean name --> BeanWrapper */ private final MapfactoryBeanInstanceCache = new ConcurrentHashMap<>(16); ... }
NO.7 ThreadLocal 线程单例
最后给大家赠送一个彩蛋,讲讲线程单例实现 ThreadLocal。ThreadLocal 不能保证其创建的对象是全局唯一,但是能保证在单个线程中是唯一的,天生的线程安全。下面我们来看代码:
public class ThreadLocalSingleton { private static final ThreadLocalthreadLocalInstance = new ThreadLocal (){ @Override protected ThreadLocalSingleton initialValue() { return new ThreadLocalSingleton(); } }; private ThreadLocalSingleton(){} public static ThreadLocalSingleton getInstance(){ return threadLocalInstance.get(); } }
写一下测试代码:
public static void main(String[] args) { System.out.println(ThreadLocalSingleton.getInstance()); System.out.println(ThreadLocalSingleton.getInstance()); System.out.println(ThreadLocalSingleton.getInstance()); System.out.println(ThreadLocalSingleton.getInstance()); System.out.println(ThreadLocalSingleton.getInstance()); Thread t1 = new Thread(new ExectorThread()); Thread t2 = new Thread(new ExectorThread()); t1.start(); t2.start(); System.out.println("End"); }
运行结果:
我们发现,在主线程 main 中无论调用多少次,获取到的实例都是同一个,都在两个子线程中分别获取到了不同的实例。那么 ThreadLocal 是如果实现这样的效果的呢?我们知道上面的单例模式为了达到线程安全的目的,给方法上锁,以时间换空间。ThreadLocal将所有的对象全部放在 ThreadLocalMap 中,为每个线程都提供一个对象,实际上是以空间换时间来实现线程间隔离的。
总结
单例模式可以保证内存里只有一个实例,减少了内存开销;可以避免对资源的多重占用。单例模式看起来非常简单,实现起来其实也非常简单。但是在面试中却是一个高频面试题。希望小伙伴们通过本章的学习,可以对您有所帮助,希望您可以多多关注脚本之家的更多内容!