Mongodb 和 普通数据库 各种属性 和语句 的对应

 

SQL to MongoDB Mapping Chart

In addition to the charts that follow, you might want to consider the Frequently Asked Questions section for a selection of common questions about MongoDB.

Terminology and Concepts

The following table presents the various SQL terminology and concepts and the corresponding MongoDB terminology and concepts.

SQL Terms/Concepts MongoDB Terms/Concepts
database database
table collection
row document or BSON document
column field
index index
table joins embedded documents and linking

primary key

Specify any unique column or column combination as primary key.

primary key

In MongoDB, the primary key is automatically set to the_id field.

aggregation (e.g. group by)

aggregation pipeline

See the SQL to Aggregation Mapping Chart.

Executables

The following table presents some database executables and the corresponding MongoDB executables. This table is not meant to be exhaustive.

  MongoDB MySQL Oracle Informix DB2
Database Server mongod mysqld oracle IDS DB2 Server
Database Client mongo mysql sqlplus DB-Access DB2 Client

Examples

The following table presents the various SQL statements and the corresponding MongoDB statements. The examples in the table assume the following conditions:

  • The SQL examples assume a table named users.

  • The MongoDB examples assume a collection named users that contain documents of the following prototype:

    {
    
      _id: ObjectId("509a8fb2f3f4948bd2f983a0"), user_id: "abc123", age: 55, status: 'A' } 

Create and Alter

The following table presents the various SQL statements related to table-level actions and the corresponding MongoDB statements.

SQL Schema Statements MongoDB Schema Statements
CREATE TABLE users ( id MEDIUMINT NOT NULL AUTO_INCREMENT, user_id Varchar(30), age Number, status char(1), PRIMARY KEY (id) ) 

Implicitly created on first insert() operation. The primary key _id is automatically added if _id field is not specified.

db.users.insert( {  user_id: "abc123",  age: 55,  status: "A"  } ) 

However, you can also explicitly create a collection:

db.createCollection("users") 
ALTER TABLE users ADD join_date DATETIME 

Collections do not describe or enforce the structure of its documents; i.e. there is no structural alteration at the collection level.

However, at the document level, update() operations can add fields to existing documents using the $set operator.

db.users.update(  { },  { $set: { join_date: new Date() } },  { multi: true } ) 
ALTER TABLE users DROP COLUMN join_date 

Collections do not describe or enforce the structure of its documents; i.e. there is no structural alteration at the collection level.

However, at the document level, update() operations can remove fields from documents using the $unset operator.

db.users.update(  { },  { $unset: { join_date: "" } },  { multi: true } ) 
CREATE INDEX idx_user_id_asc ON users(user_id) 
db.users.createIndex( { user_id: 1 } ) 
CREATE INDEX idx_user_id_asc_age_desc ON users(user_id, age DESC) 
db.users.createIndex( { user_id: 1, age: -1 } ) 
DROP TABLE users 
db.users.drop() 

For more information, see db.collection.insert()db.createCollection(),db.collection.update()$set$unsetdb.collection.createIndex()indexes,db.collection.drop(), and Data Modeling Concepts.

Insert

The following table presents the various SQL statements related to inserting records into tables and the corresponding MongoDB statements.

SQL INSERT Statements MongoDB insert() Statements
INSERT INTO users(user_id, age, status) VALUES ("bcd001", 45, "A") 
db.users.insert( { user_id: "bcd001", age: 45, status: "A" } ) 

For more information, see db.collection.insert().

Select

The following table presents the various SQL statements related to reading records from tables and the corresponding MongoDB statements.

SQL SELECT Statements MongoDB find() Statements
SELECT * FROM users 
db.users.find() 
SELECT id, user_id, status FROM users 
db.users.find(  { },  { user_id: 1, status: 1 } ) 
SELECT user_id, status FROM users 
db.users.find(  { },  { user_id: 1, status: 1, _id: 0 } ) 
SELECT * FROM users WHERE status = "A" 
db.users.find(  { status: "A" } ) 
SELECT user_id, status FROM users WHERE status = "A" 
db.users.find(  { status: "A" },  { user_id: 1, status: 1, _id: 0 } ) 
SELECT * FROM users WHERE status != "A" 
db.users.find(  { status: { $ne: "A" } } ) 
SELECT * FROM users WHERE status = "A" AND age = 50 
db.users.find(  { status: "A",  age: 50 } ) 
SELECT * FROM users WHERE status = "A" OR age = 50 
db.users.find(  { $or: [ { status: "A" } ,  { age: 50 } ] } ) 
SELECT * FROM users WHERE age > 25 
db.users.find(  { age: { $gt: 25 } } ) 
SELECT * FROM users WHERE age < 25 
db.users.find(  { age: { $lt: 25 } } ) 
SELECT * FROM users WHERE age > 25 AND age <= 50 
db.users.find(  { age: { $gt: 25, $lte: 50 } } ) 
SELECT * FROM users WHERE user_id like "%bc%" 
db.users.find( { user_id: /bc/ } ) 
SELECT * FROM users WHERE user_id like "bc%" 
db.users.find( { user_id: /^bc/ } ) 
SELECT * FROM users WHERE status = "A" ORDER BY user_id ASC 
db.users.find( { status: "A" } ).sort( { user_id: 1 } ) 
SELECT * FROM users WHERE status = "A" ORDER BY user_id DESC 
db.users.find( { status: "A" } ).sort( { user_id: -1 } ) 
SELECT COUNT(*) FROM users 
db.users.count() 

or

db.users.find().count() 
SELECT COUNT(user_id) FROM users 
db.users.count( { user_id: { $exists: true } } ) 

or

db.users.find( { user_id: { $exists: true } } ).count() 
SELECT COUNT(*) FROM users WHERE age > 30 
db.users.count( { age: { $gt: 30 } } ) 

or

db.users.find( { age: { $gt: 30 } } ).count() 
SELECT DISTINCT(status) FROM users 
db.users.distinct( "status" ) 
SELECT * FROM users LIMIT 1 
db.users.findOne() 

or

db.users.find().limit(1) 
SELECT * FROM users LIMIT 5 SKIP 10 
db.users.find().limit(5).skip(10) 
EXPLAIN SELECT * FROM users WHERE status = "A" 
db.users.find( { status: "A" } ).explain() 

For more information, see db.collection.find()db.collection.distinct(),db.collection.findOne()$ne $and$or$gt$lt$exists$lte$regexlimit(),skip()explain()sort(), and count().

Update Records

The following table presents the various SQL statements related to updating existing records in tables and the corresponding MongoDB statements.

SQL Update Statements MongoDB update() Statements
UPDATE users SET status = "C" WHERE age > 25 
db.users.update(  { age: { $gt: 25 } },  { $set: { status: "C" } },  { multi: true } ) 
UPDATE users SET age = age + 3 WHERE status = "A" 
db.users.update(  { status: "A" } ,  { $inc: { age: 3 } },  { multi: true } ) 

For more information, see db.collection.update()$set$inc, and $gt.

Delete Records

The following table presents the various SQL statements related to deleting records from tables and the corresponding MongoDB statements.

SQL Delete Statements MongoDB remove() Statements
DELETE FROM users WHERE status = "D" 
db.users.remove( { status: "D" } ) 
DELETE FROM users 
db.users.remove({}) 

For more information, see db.collection.remove().

 

 

 

SQL to Aggregation Mapping Chart

The aggregation pipeline allows MongoDB to provide native aggregation capabilities that corresponds to many common data aggregation operations in SQL.

The following table provides an overview of common SQL aggregation terms, functions, and concepts and the corresponding MongoDB aggregation operators:

SQL Terms, Functions, and Concepts MongoDB Aggregation Operators
WHERE $match
GROUP BY $group
HAVING $match
SELECT $project
ORDER BY $sort
LIMIT $limit
SUM() $sum
COUNT() $sum
join No direct corresponding operator; however, the$unwind operator allows for somewhat similar functionality, but with fields embedded within the document.

Examples

The following table presents a quick reference of SQL aggregation statements and the corresponding MongoDB statements. The examples in the table assume the following conditions:

  • The SQL examples assume two tables, orders and order_lineitem that join by theorder_lineitem.order_id and the orders.id columns.

  • The MongoDB examples assume one collection orders that contain documents of the following prototype:

    {
    
      cust_id: "abc123", ord_date: ISODate("2012-11-02T17:04:11.102Z"), status: 'A', price: 50, items: [ { sku: "xxx", qty: 25, price: 1 }, { sku: "yyy", qty: 25, price: 1 } ] } 
SQL Example MongoDB Example Description
SELECT COUNT(*) AS count FROM orders 
db.orders.aggregate( [ {  $group: {  _id: null,  count: { $sum: 1 }  } } ] ) 
Count all records fromorders
SELECT SUM(price) AS total FROM orders 
db.orders.aggregate( [ {  $group: {  _id: null,  total: { $sum: "$price" }  } } ] ) 
Sum theprice field from orders
SELECT cust_id, SUM(price) AS total FROM orders GROUP BY cust_id 
db.orders.aggregate( [ {  $group: {  _id: "$cust_id",  total: { $sum: "$price" }  } } ] ) 
For each uniquecust_id, sum theprice field.
SELECT cust_id, SUM(price) AS total FROM orders GROUP BY cust_id ORDER BY total 
db.orders.aggregate( [ {  $group: {  _id: "$cust_id",  total: { $sum: "$price" }  } },  { $sort: { total: 1 } } ] ) 
For each uniquecust_id, sum theprice field, results sorted by sum.
SELECT cust_id, ord_date, SUM(price) AS total FROM orders GROUP BY cust_id, ord_date 
db.orders.aggregate( [ {  $group: {  _id: {  cust_id: "$cust_id",  ord_date: {  month: { $month: "$ord_date" },  day: { $dayOfMonth: "$ord_date" },  year: { $year: "$ord_date"}  }  },  total: { $sum: "$price" } } } ] ) 
For each uniquecust_id,ord_dategrouping, sum the pricefield. Excludes the time portion of the date.
SELECT cust_id, count(*) FROM orders GROUP BY cust_id HAVING count(*) > 1 
db.orders.aggregate( [ {  $group: {  _id: "$cust_id",  count: { $sum: 1 }  } },  { $match: { count: { $gt: 1 } } } ] ) 
For cust_idwith multiple records, return thecust_id and the corresponding record count.
SELECT cust_id, ord_date, SUM(price) AS total FROM orders GROUP BY cust_id, ord_date HAVING total > 250 
db.orders.aggregate( [ {  $group: {  _id: {  cust_id: "$cust_id",  ord_date: {  month: { $month: "$ord_date" },  day: { $dayOfMonth: "$ord_date" },  year: { $year: "$ord_date"}  }  },  total: { $sum: "$price" } } },  { $match: { total: { $gt: 250 } } } ] ) 
For each uniquecust_id,ord_dategrouping, sum the pricefield and return only where the sum is greater than 250. Excludes the time portion of the date.
SELECT cust_id, SUM(price) as total FROM orders WHERE status = 'A' GROUP BY cust_id 
db.orders.aggregate( [  { $match: { status: 'A' } }, {  $group: {  _id: "$cust_id",  total: { $sum: "$price" }  } } ] ) 
For each uniquecust_id with status A, sum the pricefield.
SELECT cust_id, SUM(price) as total FROM orders WHERE status = 'A' GROUP BY cust_id HAVING total > 250 
db.orders.aggregate( [  { $match: { status: 'A' } },  {  $group: {  _id: "$cust_id",  total: { $sum: "$price" }  }  },  { $match: { total: { $gt: 250 } } } ] ) 
For each uniquecust_id with status A, sum the pricefield and return only where the sum is greater than 250.
SELECT cust_id, SUM(li.qty) as qty FROM orders o, order_lineitem li WHERE li.order_id = o.id GROUP BY cust_id 
db.orders.aggregate( [  { $unwind: "$items" },  {  $group: {  _id: "$cust_id",  qty: { $sum: "$items.qty" }  }  } ] ) 
For each uniquecust_id, sum the corresponding line item qtyfields associated with the orders.
SELECT COUNT(*) FROM (SELECT cust_id, ord_date FROM orders GROUP BY cust_id, ord_date) as DerivedTable 
db.orders.aggregate( [  {  $group: {  _id: {  cust_id: "$cust_id",  ord_date: {  month: { $month: "$ord_date" },  day: { $dayOfMonth: "$ord_date" },  year: { $year: "$ord_date"}  }  }  }  },  {  $group: { _id: null, count: { $sum: 1 } } } ] )

你可能感兴趣的:(mongodb)