【YOLOV5-5.x 源码解读】train.py

目录

  • 前言
  • 0、导入需要的包和基本配置
  • 1、设置opt参数
  • 2、main函数
    • 2.1、logging和wandb初始化
    • 2.2、判断是否使用断点续训resume, 读取参数
    • 2.3、DDP mode设置
    • 2.4、不进化算法,正常训练
    • 2.5、遗传进化算法,边进化边训练
  • 3、train
    • 3.1、载入参数
    • 3.2、初始化参数和配置信息
    • 3.3、model
    • 3.4、优化器
    • 3.5、学习率
    • 3.6、训练前最后准备
    • 3.7、数据加载
    • 3.8、训练
    • 3.9、结尾
  • 4、run
  • 总结
  • Reference

前言

源码: YOLOv5源码.
导航: 【YOLOV5-5.x 源码讲解】整体项目文件导航.
注释版全部项目文件已上传至GitHub: yolov5-5.x-annotations.

这个文件是yolov5的训练脚本。

0、导入需要的包和基本配置

import argparse               # 解析命令行参数模块
import logging                # 日志模块
import math                   # 数学公式模块
import os                     # 与操作系统进行交互的模块 包含文件路径操作和解析
import random                 # 生成随机数模块
import sys                    # sys系统模块 包含了与Python解释器和它的环境有关的函数
import time                   # 时间模块 更底层
import warnings               # 发出警告信息模块
from copy import deepcopy     # 深度拷贝模块
from pathlib import Path      # Path将str转换为Path对象 使字符串路径易于操作的模块
from threading import Thread  # 线程操作模块

import numpy as np                # numpy数组操作模块
import torch.distributed as dist  # 分布式训练模块
import torch.nn as nn             # 对torch.nn.functional的类的封装 有很多和torch.nn.functional相同的函数
import torch.nn.functional as F   # PyTorch函数接口 封装了很多卷积、池化等函数
import torch.optim as optim       # PyTorch各种优化算法的库
import torch.optim.lr_scheduler as lr_scheduler  # 学习率模块
import torch.utils.data           # 数据操作模块
import yaml                       # 操作yaml文件模块
from torch.cuda import amp        # PyTorch amp自动混合精度训练模块
from torch.nn.parallel import DistributedDataParallel as DDP  # 多卡训练模块
from torch.utils.tensorboard import SummaryWriter  # tensorboard模块
from tqdm import tqdm  # 进度条模块

FILE = Path(__file__).absolute()  # FILE = WindowsPath 'F:\yolo_v5\yolov5-U\detect.py'
# 将'F:/yolo_v5/yolov5-U'加入系统的环境变量  该脚本结束后失效
sys.path.append(FILE.parents[0].as_posix())  # add yolov5/ to path

import val  # for end-of-epoch mAP
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.datasets import create_dataloader
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
    strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
    check_requirements, print_mutation, set_logging, one_cycle, colorstr
from utils.google_utils import attempt_download
from utils.loss import ComputeLoss
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution, plot_lr_scheduler, plot_results_overlay
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
from utils.metrics import fitness

# 初始化日志模块
logger = logging.getLogger(__name__)

# pytorch 分布式训练初始化
# https://pytorch.org/docs/stable/elastic/run.html
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # 这个 Worker 是这台机器上的第几个 Worker
RANK = int(os.getenv('RANK', -1))              # 这个 Worker 是全局第几个 Worker
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))   # 总共有几个 Worker

1、设置opt参数

def parse_opt(known=False):
    """
    weights: 权重文件
    cfg: 模型配置文件 包括nc、depth_multiple、width_multiple、anchors、backbone、head等
    data: 数据集配置文件 包括path、train、val、test、nc、names、download等
    hyp: 初始超参文件
    epochs: 训练轮次
    batch-size: 训练批次大小
    img-size: 输入网络的图片分辨率大小
    resume: 断点续训, 从上次打断的训练结果处接着训练  默认False
    nosave: 不保存模型  默认False(保存)      True: only test final epoch
    notest: 是否只测试最后一轮 默认False  True: 只测试最后一轮   False: 每轮训练完都测试mAP
    workers: dataloader中的最大work数(线程个数)
    device: 训练的设备
    single-cls: 数据集是否只有一个类别 默认False

    rect: 训练集是否采用矩形训练  默认False
    noautoanchor: 不自动调整anchor 默认False(自动调整anchor)
    evolve: 是否进行超参进化 默认False
    multi-scale: 是否使用多尺度训练 默认False
    label-smoothing: 标签平滑增强 默认0.0不增强  要增强一般就设为0.1
    adam: 是否使用adam优化器 默认False(使用SGD)
    sync-bn: 是否使用跨卡同步bn操作,再DDP中使用  默认False
    linear-lr: 是否使用linear lr  线性学习率  默认False 使用cosine lr
    cache-image: 是否提前缓存图片到内存cache,以加速训练  默认False
    image-weights: 是否使用图片采用策略(selection img to training by class weights) 默认False 不使用

    bucket: 谷歌云盘bucket 一般用不到
    project: 训练结果保存的根目录 默认是runs/train
    name: 训练结果保存的目录 默认是exp  最终: runs/train/exp
    exist-ok: 如果文件存在就ok不存在就新建或increment name  默认False(默认文件都是不存在的)
    quad: dataloader取数据时, 是否使用collate_fn4代替collate_fn  默认False
    save_period: Log model after every "save_period" epoch    默认-1 不需要log model 信息
    artifact_alias: which version of dataset artifact to be stripped  默认lastest  貌似没用到这个参数?
    local_rank: rank为进程编号  -1且gpu=1时不进行分布式  -1且多块gpu使用DataParallel模式

    entity: wandb entity 默认None
    upload_dataset: 是否上传dataset到wandb tabel(将数据集作为交互式 dsviz表 在浏览器中查看、查询、筛选和分析数据集) 默认False
    bbox_interval: 设置界框图像记录间隔 Set bounding-box image logging interval for W&B 默认-1   opt.epochs // 10
    """
    parser = argparse.ArgumentParser()
    # --------------------------------------------------- 常用参数 ---------------------------------------------
    parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='initial weights path')
    parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
    parser.add_argument('--data', type=str, default='data/VOC.yaml', help='dataset.yaml path')
    parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path')
    parser.add_argument('--epochs', type=int, default=20)
    parser.add_argument('--batch-size', type=int, default=4, help='total batch size for all GPUs')
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
    parser.add_argument('--nosave', action='store_true', help='True only save final checkpoint')
    parser.add_argument('--notest', action='store_true', help='True only test final epoch')
    parser.add_argument('--workers', type=int, default=0, help='maximum number of dataloader workers')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
    # --------------------------------------------------- 数据增强参数 ---------------------------------------------
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
    parser.add_argument('--evolve', default=False, action='store_true', help='evolve hyperparameters')
    parser.add_argument('--multi-scale', default=True, action='store_true', help='vary img-size +/- 50%%')
    parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
    parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--linear-lr', default=False, action='store_true', help='linear LR')
    parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
    parser.add_argument('--image-weights', default=True, action='store_true', help='use weighted image selection for training')
    # --------------------------------------------------- 其他参数 ---------------------------------------------
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--project', default='runs/train', help='save to project/name')
    parser.add_argument('--name', default='exp', help='save to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--quad', action='store_true', help='quad dataloader')
    parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
    parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
    parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, wins do not modify')
    # --------------------------------------------------- 三个W&B(wandb)参数 ---------------------------------------------
    parser.add_argument('--entity', default=None, help='W&B entity')
    parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
    parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
    # parser.parse_known_args()
    # 作用就是当仅获取到基本设置时,如果运行命令中传入了之后才会获取到的其他配置,不会报错;而是将多出来的部分保存起来,留到后面使用
    opt = parser.parse_known_args()[0] if known else parser.parse_args()
    return opt

2、main函数

2.1、logging和wandb初始化

def main(opt):
    # 1、logging和wandb初始化
    # 日志初始化
    set_logging(RANK)
    if RANK in [-1, 0]:
        # 输出所有训练opt参数  train: ...
        print(colorstr('train: ') + ', '.join(f'{
       k}={
       v}' for k, v in vars(opt).items()))
        # 检查代码版本是否是最新的  github: ...
        check_git_status()
        # 检查requirements.txt所需包是否都满足 requirements: ...
        check_requirements(exclude=['thop'])

    # wandb logging初始化
    wandb_run = check_wandb_resume(opt)

2.2、判断是否使用断点续训resume, 读取参数

使用断点续训 就从last.pt中读取相关参数;不使用断点续训 就从文件中读取相关参数

    # 2、判断是否使用断点续训resume, 读取参数
    if opt.resume and not wandb_run:
        # 使用断点续训 就从last.pt中读取相关参数
        # 如果resume是str,则表示传入的是模型的路径地址
        # 如果resume是True,则通过get_lastest_run()函数找到runs为文件夹中最近的权重文件last.pt
        ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()
        assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' # check
        # 相关的opt参数也要替换成last.pt中的opt参数
        with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
            opt = argparse.Namespace(**yaml.safe_load(f))  # replace
        opt.cfg, opt.weights, opt.resume = '', ckpt, True  # reinstate
        logger.info('Resuming training from %s' % ckpt)    # print
    else:
        # 不使用断点续训 就从文件中读取相关参数
        # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
        opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp)  # check files
        assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
        # 将opt.img_size扩展为[train_img_size, test_img_size]
        opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))
        # opt.evolve=False,opt.name='exp'    opt.evolve=True,opt.name='evolve'
        opt.name = 'evolve' if opt.evolve else opt.name
        # 根据opt.project生成目录  如: runs/train/exp18
        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve))

2.3、DDP mode设置

    # 3、DDP mode设置
    # 选择设备  cpu/cuda:0
    device = select_device(opt.device, batch_size=opt.batch_size)
    if LOCAL_RANK != -1:
        # LOCAL_RANK != -1 进行多GPU训练
        from datetime import timedelta
        assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
        torch.cuda.set_device(LOCAL_RANK)
        # 根据GPU编号选择设备
        device = torch.device('cuda', LOCAL_RANK)
        # 初始化进程组  distributed backend
        dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=60))
        assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'
        assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'

2.4、不进化算法,正常训练

    # 4、不使用进化算法 正常Train
    if not opt.evolve:
        # 如果不进行超参进化 那么就直接调用train()函数,开始训练
        train(opt.hyp, opt, device)

        # 如果是使用多卡训练, 那么销毁进程组
        if WORLD_SIZE > 1 and RANK == 0:
            _ = [print('Destroying process group... ', end=''), dist.destroy_process_group(), print('Done.')]

2.5、遗传进化算法,边进化边训练

    # 5、遗传进化算法,边进化边训练
    # Evolve hyperparameters (optional)
    # 否则使用超参进化算法(遗传算法) 求出最佳超参 再进行训练
    else:
        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
        # 超参进化列表 (突变规模, 最小值, 最大值)
        meta = {
     'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
                'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
                'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
                'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
                'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
                'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
                'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
                'box': (1, 0.02, 0.2),  # box loss gain
                'cls': (1, 0.2, 4.0),  # cls loss gain
                'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
                'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
                'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
                'iou_t': (0, 0.1, 0.7),  # IoU training threshold
                'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
                'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
                'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
                'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
                'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
                'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
                'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
                'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
                'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
                'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
                'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
                'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
                'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
                'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
                'mixup': (1, 0.0, 1.0)}  # image mixup (probability)

        with open(opt.hyp) as f:
            hyp = yaml.safe_load(f)  # 载入初始超参
        assert LOCAL_RANK == -1, 'DDP mode not implemented for --evolve'
        opt.notest, opt.nosave = True, True  # only test/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
        yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml'  # 超参进化后文件保存地址
        if opt.bucket:
            os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt if exists

        """
        使用遗传算法进行参数进化 默认是进化300代
        这里的进化算法是:根据之前训练时的hyp来确定一个base hyp再进行突变;
        如何根据?通过之前每次进化得到的results来确定之前每个hyp的权重
        有了每个hyp和每个hyp的权重之后有两种进化方式;
        1.根据每个hyp的权重随机选择一个之前的hyp作为base hyp,random.choices(range(n), weights=w)
        2.根据每个hyp的权重对之前所有的hyp进行融合获得一个base hyp,(x * w.reshape(n, 1)).sum(0) / w.sum()
        evolve.txt会记录每次进化之后的results+hyp
        每次进化时,hyp会根据之前的results进行从大到小的排序;
        再根据fitness函数计算之前每次进化得到的hyp的权重
        再确定哪一种进化方式,从而进行进化
        """
        for _ in range(300):  # generations to evolve
            if Path('evolve.txt').exists():  # if evolve.txt exists: select best hyps and mutate
                # Select parent(s)
                # 选择超参进化方式 只用single和weighted两种
                parent = 'single'  # parent selection method: 'single' or 'weighted'
                # 加载evolve.txt
                x = np.loadtxt('evolve.txt', ndmin=2)
                # 选取至多前五次进化的结果
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                # 根据resluts计算hyp权重
                w = fitness(x) - fitness(x).min() + 1E-6  # weights (sum > 0)
                # 根据不同进化方式获得base hyp
                if parent == 'single' or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate 超参进化
                mp, s = 0.8, 0.2  # mutation probability 突变概率, sigma
                npr = np.random
                npr.seed(int(time.time()))
                # 获取突变初始值
                g = np.array([x[0] for x in meta.values()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                # 设置突变
                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
                # 将突变添加到base hyp上
                # [i+7]是因为x中前7个数字为results的指标(P,R,mAP,F1,test_loss=(box,obj,cls)),之后才是超参数hyp
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits  限制超参再规定范围
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # 训练 使用突变后的参超 测试其效果
            results = train(hyp.copy(), opt, device)

            # Write mutation results
            # 将结果写入results 并将对应的hyp写到evolve.txt evolve.txt中每一行为一次进化的结果
            # 每行前七个数字 (P, R, mAP, F1, test_losses(GIOU, obj, cls)) 之后为hyp
            # 保存hyp到yaml文件
            print_mutation(hyp.copy(), results, yaml_file, opt.bucket)

        # Plot results
        plot_evolution(yaml_file, Path(opt.save_dir))
        print(f'Hyperparameter evolution complete. Best results saved as: {
       yaml_file}\n'
              f'Command to train a new model with these hyperparameters: $ python train.py --hyp {
       yaml_file}')

3、train

3.1、载入参数

def train(hyp, opt, device):
    """
    :params hyp: data/hyps/hyp.scratch.yaml   hyp dictionary
    :params opt: main中opt参数
    :params device: 当前设备
    """

3.2、初始化参数和配置信息

初始化随机数种子 + opt参数 + 路径信息 + 超参设置保存 + 保存opt + 加载数据配置信息 + 打印日志信息(logger + wandb) + 其他参数(plots、cuda、nc、names、is_coco)

    # ----------------------------------------------- 初始化参数和配置信息 ----------------------------------------------
    # 设置一系列的随机数种子
    init_seeds(1 + RANK)

    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, notest, nosave, workers, = \
        opt.save_dir, opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
        opt.resume, opt.notest, opt.nosave, opt.workers

    save_dir = Path(save_dir)  # 保存训练结果的目录  如runs/train/exp18
    wdir = save_dir / 'weights'  # 保存权重路径 如runs/train/exp18/weights
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'  # runs/train/exp18/weights/last.pt
    best = wdir / 'best.pt'  # runs/train/exp18/weights/best.pt
    results_file = save_dir / 'results.txt'  # runs/train/exp18/results.txt

    # Hyperparameters超参
    if isinstance(hyp, str):
        with open(hyp) as f:
            hyp = yaml.safe_load(f)  # load hyps dict  加载超参信息
    # 日志输出超参信息 hyperparameters: ...
    logger.info(colorstr('hyperparameters: ') + ', '.join(f'{
       k}={
       v}' for k, v in hyp.items()))

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.safe_dump(hyp, f, sort_keys=False)

    # 保存opt
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.safe_dump(vars(opt), f, sort_keys=False)

    # Configure
    # 是否需要画图: 所有的labels信息、前三次迭代的barch、训练结果等
    plots = not evolve  # create plots
    cuda = device.type != 'cpu'

    # data_dict: 加载VOC.yaml中的数据配置信息  dict
    with open(data) as f:
        data_dict = yaml.safe_load(f)  # data dict

    # Loggers
    loggers = {
     'wandb': None, 'tb': None}  # loggers dict
    if RANK in [-1, 0]:
        # TensorBoard
        if not evolve:
            prefix = colorstr('tensorboard: ')  # 彩色打印信息
            logger.info(f"{
       prefix}Start with 'tensorboard --logdir {
       opt.project}', view at http://localhost:6006/")
            loggers['tb'] = SummaryWriter(str(save_dir))

        # W&B  wandb日志打印相关
        opt.hyp = hyp  # add hyperparameters
        run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
        run_id = run_id if opt.resume else None  # start fresh run if transfer learning
        wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
        loggers['wandb'] = wandb_logger.wandb
        if loggers['wandb']:
            data_dict = wandb_logger.data_dict
            weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp  # may update weights, epochs if resuming

    # nc: number of classes  数据集有多少种类别
    nc = 1 if single_cls else int(data_dict['nc'])
    # names: 数据集所有类别的名字
    names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, data)  # check
    # 当前数据集是否是coco数据集(80个类别)  save_json和coco评价
    is_coco = data.endswith('coco.yaml') and nc == 80  # COCO dataset

3.3、model

载入模型(预训练/不预训练) + 检查数据集 + 设置数据集路径参数(train_path、test_path) + 冻结权重层

    # ============================================== 1、model =================================================
    # 载入模型
    pretrained = weights.endswith('.pt')
    if pretrained:
        # 使用预训练
        # torch_distributed_zero_first(RANK): 用于同步不同进程对数据读取的上下文管理器
        with torch_distributed_zero_first(RANK):
            # 这里下载是去google云盘下载, 一般会下载失败,所以建议自行去github中下载再放到weights下
            weights = attempt_download(weights)  # download if not found locally
        # 加载模型及参数
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        # ????
        # 这里加载模型有两种方式,一种是通过opt.cfg 另一种是通过ckpt['model'].yaml
        # 区别在于是否使用resume 如果使用resume会将opt.cfg设为空,按照ckpt['model'].yaml来创建模型
        # 这也影响了下面是否除去anchor的key(也就是不加载anchor), 如果resume则不加载anchor
        # 原因: 保存的模型会保存anchors,有时候用户自定义了anchor之后,再resume,则原来基于coco数据集的anchor会自己覆盖自己设定的anchor
        # 详情参考: https://github.com/ultralytics/yolov5/issues/459
        # 所以下面设置intersect_dicts()就是忽略exclude
        model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
        exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        # 筛选字典中的键值对  把exclude删除
        state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # 载入模型权重
        logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        # 不使用预训练
        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create

    # 检查数据集 如果本地没有则从torch库中下载并解压数据集
    with torch_distributed_zero_first(RANK):
        check_dataset(data_dict)  # check

    # 数据集参数
    train_path = data_dict['train']
    test_path = data_dict['val']

    # 冻结权重层
    # 这里只是给了冻结权重层的一个例子, 但是作者并不建议冻结权重层, 训练全部层参数, 可以得到更好的性能, 当然也会更慢
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

3.4、优化器

参数设置(nbs、accumulate、hyp[‘weight_decay’]) + 分组优化(pg0、pg1、pg2) + 选择优化器 + 为三个优化器选择优化方式 + 删除变量

    # ============================================== 2、优化器 =================================================
    # nbs 标称的batch_size,模拟的batch_size 比如默认的话上面设置的opt.batch_size=16 -> nbs=64
    # 也就是模型梯度累计 64/16=4(accumulate) 次之后就更新一次模型 等于变相的扩大了batch_size
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
    # 根据accumulate设置超参: 权重衰减参数
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {
       hyp['weight_decay']}")  # 日志

    # 将模型参数分为三组(weights、biases、bn)来进行分组优化
    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    # 选择优化器 并设置pg0(bn参数)的优化方式
    if opt.adam:
        optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

    # 设置pg1(weights)的优化方式
    optimizer.add_param_group({
     'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
    # 设置pg2(biases)的优化方式
    optimizer.add_param_group({
     'params': pg2})  # add pg2 (biases)
    # 打印log日志 优化信息
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))  # 日志
    # 删除三个变量 优化代码
    del pg0, pg1, pg2

3.5、学习率

线性学习率 + one cycle学习率 + 实例化 scheduler + 画出学习率变化曲线

    # ============================================== 3、学习率 =================================================
    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    if opt.linear_lr:
        # 使用线性学习率
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
    else:
        # 使用one cycle 学习率  https://arxiv.org/pdf/1803.09820.pdf
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    # 实例化 scheduler
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    plot_lr_scheduler(optimizer, scheduler, epochs, save_dir=save_dir)  # 画出学习率变化曲线

3.6、训练前最后准备

EMA + 使用预训练 + 参数设置(gs、nl、imgsz、imgsz_test) + DP + DDP + SyncBatchNorm

    # ---------------------------------------------- 训练前最后准备 ------------------------------------------------------
    # EMA
    # 单卡训练: 使用EMA(指数移动平均)对模型的参数做平均, 一种给予近期数据更高权重的平均方法, 以求提高测试指标并增加模型鲁棒。
    ema = ModelEMA(model) if RANK in [-1, 0] else None

    # 使用预训练
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results
        if ckpt.get('training_results') is not None:
            results_file.write_text(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
        if epochs < start_epoch:
            logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                        (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # gs: 获取模型最大stride=32   [32 16 8]
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    # nl: 有多少个detect 3
    nl = model.model[-1].nl  # number of detection layers (used for scaling hyp['obj'])
    # 获取训练图片和测试图片分辨率 imgsz=640  imgsz_test=640
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples

    # 是否使用DP mode
    # 如果rank=-1且gpu数量>1则使用DataParallel单机多卡模式  效果并不好(分布不平均)
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
                        'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
        model = torch.nn.DataParallel(model)

    # 是否使用DDP mode
    # 如果rank !=-1, 则使用DistributedDataParallel模式  真正的单机单卡(分布平均)
    if cuda and RANK != -1:
        model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)

    # SyncBatchNorm  是否使用跨卡BN
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

3.7、数据加载

加载训练集dataloader、dataset + 参数(mlc、nb) + 加载验证集testloader + 如果不使用断点续训,设置labels相关参数(labels、c) ,plots可视化数据集labels信息,检查anchors(k-means + 遗传进化算法),model半精度

    # ============================================== 4、数据加载 ===============================================
    # Trainloader
    dataloader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
                                            hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect,
                                            rank=RANK, workers=workers, image_weights=opt.image_weights,
                                            quad=opt.quad, prefix=colorstr('train: '))

    # 获取标签中最大类别值,与类别数作比较,如果小于类别数则表示有问题
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, data, nc - 1)
    nb = len(dataloader)  # number of batches

    # TestLoader
    if RANK in [-1, 0]:
        testloader = create_dataloader(test_path, imgsz_test, batch_size // WORLD_SIZE * 2, gs, single_cls,
                                       hyp=hyp, cache=opt.cache_images and not notest, rect=True, rank=-1,
                                       workers=workers, pad=0.5, prefix=colorstr('val: '))[0]

        # 如果不使用断点续训
        if not resume:
            # 统计dataset的label信息
            # [6301, 5] 数据集中有6301个target  [:, class+x+y+w+h]  nparray
            labels = np.concatenate(dataset.labels, 0)
            # 将labels从nparray转为tensor格式
            c = torch.tensor(labels[:, 0])
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                # plots可视化数据集labels信息
                plot_labels(labels, names, save_dir, loggers)
                if loggers['tb']:
                    loggers['tb'].add_histogram('classes', c, 0)  # 将统计结果加入TensorBoard

            # Check Anchors
            # 计算默认锚框anchor与数据集标签框的高宽比
            # 标签的高h宽w与anchor的高h_a宽h_b的比值 即h/h_a, w/w_a都要在(1/hyp['anchor_t'], hyp['anchor_t'])是可以接受的
            # 如果bpr小于98%,则根据k-mean算法聚类新的锚框
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

3.8、训练

设置/初始化一些训练要用的参数(hyp[‘box’]、hyp[‘cls’]、hyp[‘obj’]、hyp[‘label_smoothing’]、model.nc、model.hyp、model.gr、从训练样本标签得到类别权重model.class_weights、model.names、热身迭代的次数iterationsnw、last_opt_step、初始化maps和results、学习率衰减所进行到的轮次scheduler.last_epoch + 设置amp混合精度训练scaler + 初始化损失函数compute_loss + 打印日志信息) + 开始训练(注意五点:图片采样策略 + Warmup热身训练 + multi_scale多尺度训练 + amp混合精度训练 + accumulate 梯度更新策略) + 打印训练相关信息(包括当前epoch、显存、损失(box、obj、cls、total)、当前batch的target的数量和图片的size等 + Plot 前三次迭代的barch的标签框再图片中画出来并保存 + wandb ) + validation(调整学习率、scheduler.step() 、emp val.run()得到results, maps相关信息、将测试结果results写入result.txt中、wandb_logger、Update best mAP 以加权mAP fitness为衡量标准、Save model)

    # ============================================== 5、训练 ===============================================
    # 设置/初始化一些训练要用的参数
    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # 分类损失系数
    hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou) 用于loss计算
    # 从训练样本标签得到类别权重(和类别中的目标数即类别频率成反比)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names  # 获取类别名

    # Start training
    t0 = time.time()
    # 获取热身迭代的次数iterations  # number of warmup iterations, max(3 epochs, 1k iterations)
    nw = max(round(hyp['warmup_epochs'] * nb), 1000)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    last_opt_step = -1
    # 初始化maps(每个类别的map)和results
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    # 设置学习率衰减所进行到的轮次,即使打断训练,使用resume接着训练也能正常衔接之前的训练进行学习率衰减
    scheduler.last_epoch = start_epoch - 1  # do not move
    # 设置amp混合精度训练    GradScaler + autocast
    scaler = amp.GradScaler(enabled=cuda)
    # 初始化损失函数
    compute_loss = ComputeLoss(model)  # init loss class
    # 打印日志信息
    logger.info(f'Image sizes {
       imgsz} train, {
       imgsz_test} test\n'
                f'Using {
       dataloader.num_workers} dataloader workers\n'
                f'Logging results to {
       save_dir}\n'
                f'Starting training for {
       epochs} epochs...')
    # 开始训练
    # start training -----------------------------------------------------------------------------------------------------
    for epoch in range(start_epoch, epochs):   # epoch
        model.train()

        # Update image weights (optional)  并不一定好  默认是False的
        # 如果为True 进行图片采样策略(按数据集各类别权重采样)
        if opt.image_weights:
            # 根据前面初始化的图片采样权重model.class_weights(每个类别的权重 频率高的权重小)以及maps配合每张图片包含的类别数
            # 通过rando.choices生成图片索引indices从而进行采用 (作者自己写的采样策略,效果不一定ok)
            # Generate indices
            if RANK in [-1, 0]:
                # 从训练(gt)标签获得每个类的权重  标签频率高的类权重低
                cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc
                # 得到每一张图片对应的采样权重[128]
                iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)
                # random.choices: 从range(dataset.n)序列中按照weights(参考每张图片采样权重)进行采样, 一次取一个数字  采样次数为k
                # 最终得到所有图片的采样顺序(参考每张图片采样权重) list [128]
                dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
            # Broadcast if DDP  采用广播采样策略
            if RANK != -1:
                indices = (torch.tensor(dataset.indices) if RANK == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if RANK != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        # 初始化训练时打印的平均损失信息
        mloss = torch.zeros(4, device=device)  # mean losses

        if RANK != -1:
            # DDP模式打乱数据,并且dpp.sampler的随机采样数据是基于epoch+seed作为随机种子,每次epoch不同,随机种子不同
            dataloader.sampler.set_epoch(epoch)

        # 进度条,方便展示信息
        pbar = enumerate(dataloader)
        logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
        if RANK in [-1, 0]:
            # 创建进度条
            pbar = tqdm(pbar, total=nb)  # progress bar

        # train
        # 梯度清零
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:   # batch
            # ni: 计算当前迭代次数 iteration
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            # 热身训练(前nw次迭代)热身训练迭代的次数iteration范围[1:nw]  选取较小的accumulate,学习率以及momentum,慢慢的训练
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    # bias的学习率从0.1下降到基准学习率lr*lf(epoch) 其他的参数学习率增加到lr*lf(epoch)
                    # lf为上面设置的余弦退火的衰减函数
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale 多尺度训练   从[imgsz*0.5, imgsz*1.5+gs]间随机选取一个尺寸(32的倍数)作为当前batch的尺寸送入模型开始训练
            # imgsz: 默认训练尺寸   gs: 模型最大stride=32   [32 16 8]
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    # 下采样
                    imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward  混合精度训练 开启autocast的上下文
            with amp.autocast(enabled=cuda):
                # pred: [8, 3, 68, 68, 25] [8, 3, 34, 34, 25] [8, 3, 17, 17, 25]
                # [bs, anchor_num, grid_w, grid_h, xywh+c+20classes]
                pred = model(imgs)  # forward
                # 计算损失,包括分类损失,置信度损失和框的回归损失
                # loss为总损失值  loss_items为一个元组,包含分类损失、置信度损失、框的回归损失和总损失
                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
                if RANK != -1:
                    # 采用DDP训练 平均不同gpu之间的梯度
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    # 如果采用collate_fn4取出mosaic4数据loss也要翻4倍
                    loss *= 4.

            # Backward  反向传播  将梯度放大防止梯度的underflow(amp混合精度训练)
            scaler.scale(loss).backward()

            # Optimize
            # 模型反向传播accumulate次(iterations)后再根据累计的梯度更新一次参数
            if ni - last_opt_step >= accumulate:
                # scaler.step()首先把梯度的值unscale回来
                # 如果梯度的值不是 infs 或者 NaNs, 那么调用optimizer.step()来更新权重,
                # 否则,忽略step调用,从而保证权重不更新(不被破坏)
                scaler.step(optimizer)  # optimizer.step   参数更新
                # 准备着,看是否要增大scaler
                scaler.update()
                # 梯度清零
                optimizer.zero_grad()
                if ema:
                    # 当前epoch训练结束  更新ema
                    ema.update(model)
                last_opt_step = ni


            # 打印Print一些信息 包括当前epoch、显存、损失(box、obj、cls、total)、当前batch的target的数量和图片的size等信息
            if RANK in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 + '%10.4g' * 6) % (
                    f'{
       epoch}/{
       epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)   # 进度条显示以上信息

                # Plot  将前三次迭代的barch的标签框再图片中画出来并保存  train_batch0/1/2.jpg
                if plots and ni < 3:
                    f = save_dir / f'train_batch{
       ni}.jpg'  # filename
                    Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
                    if loggers['tb'] and ni == 0:  # TensorBoard
                        with warnings.catch_warnings():
                            warnings.simplefilter('ignore')  # suppress jit trace warning
                            loggers['tb'].add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
                # wandb 显示信息
                elif plots and ni == 10 and loggers['wandb']:
                    wandb_logger.log({
     'Mosaics': [loggers['wandb'].Image(str(x), caption=x.name) for x in
                                                  save_dir.glob('train*.jpg') if x.exists()]})

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler  一个epoch训练结束后都要调整学习率(学习率衰减)
        # group中三个学习率(pg0、pg1、pg2)每个都要调整
        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        # validation
        # DDP process 0 or single-GPU
        if RANK in [-1, 0]:
            # mAP
            # 将model中的属性赋值给ema
            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
            # 判断当前epoch是否是最后一轮
            final_epoch = epoch + 1 == epochs
            # notest: 是否只测试最后一轮  True: 只测试最后一轮   False: 每轮训练完都测试mAP
            if not notest or final_epoch:  # Calculate mAP
                wandb_logger.current_epoch = epoch + 1
                # 测试使用的是ema(指数移动平均 对模型的参数做平均)的模型
                # results: [1] Precision 所有类别的平均precision(最大f1时)
                #          [1] Recall 所有类别的平均recall
                #          [1] [email protected] 所有类别的平均[email protected]
                #          [1] [email protected]:0.95 所有类别的平均[email protected]:0.95
                #          [1] box_loss 验证集回归损失, obj_loss 验证集置信度损失, cls_loss 验证集分类损失
                # maps: [80] 所有类别的[email protected]:0.95
                results, maps, _ = val.run(data_dict,  # 数据集配置文件地址 包含数据集的路径、类别个数、类名、下载地址等信息
                                           batch_size=batch_size // WORLD_SIZE * 2,  # bs
                                           imgsz=imgsz_test,  # test img size
                                           model=ema.ema,  # ema model
                                           single_cls=single_cls,  # 是否是单类数据集
                                           dataloader=testloader,  # test dataloader
                                           save_dir=save_dir,  # 保存地址 runs/train/expn
                                           save_json=is_coco and final_epoch, # 是否按照coco的json格式保存预测框
                                           verbose=nc < 50 and final_epoch,  # 是否打印出每个类别的mAP
                                           plots=plots and final_epoch,  # 是否可视化
                                           wandb_logger=wandb_logger,  # 网页可视化 类似于tensorboard
                                           compute_loss=compute_loss)  # 损失函数(train)


            # Write  将测试结果写入result.txt中
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results + '\n')  # append metrics, val_loss

            # wandb_logger 类似tensorboard的一种网页端显示训练信息的工具
            tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss',  # train loss
                    'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
                    'val/box_loss', 'val/obj_loss', 'val/cls_loss',  # val loss
                    'x/lr0', 'x/lr1', 'x/lr2']  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if loggers['tb']:
                    loggers['tb'].add_scalar(tag, x, epoch)  # TensorBoard
                if loggers['wandb']:
                    wandb_logger.log({
     tag: x})  # W&B

            # Update best mAP 这里的best mAP其实是[P, R, [email protected], [email protected]]的一个加权值
            # fi: [P, R, [email protected], [email protected]]的一个加权值 = 0.1*[email protected] + 0.9*[email protected]
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi
            wandb_logger.end_epoch(best_result=best_fitness == fi)

            # Save model
            # 保存带checkpoint的模型用于inference或resuming training
            # 保存模型, 还保存了epoch, results, optimizer等信息
            # optimizer将不会在最后一轮完成后保存
            # model保存的是EMA的模型
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {
     'epoch': epoch,
                        'best_fitness': best_fitness,
                        'training_results': results_file.read_text(),
                        'model': deepcopy(de_parallel(model)).half(),
                        'ema': deepcopy(ema.ema).half(),
                        'updates': ema.updates,
                        'optimizer': optimizer.state_dict(),
                        'wandb_id': wandb_logger.wandb_run.id if loggers['wandb'] else None}

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if loggers['wandb']:
                    if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
                        wandb_logger.log_model(last.parent, opt, epoch, fi, best_model=best_fitness == fi)
                del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------

    # end training -----------------------------------------------------------------------------------------------------

3.9、结尾

打印一些信息(日志: 打印训练时间、plots可视化训练结果results1.png、confusion_matrix.png 以及(‘F1’, ‘PR’, ‘P’, ‘R’)曲线变化 、日志信息) + coco评价(只在coco数据集才会运行) + 释放显存 return results

  # 打印一些信息
    if RANK in [-1, 0]:
        # 日志: 打印训练时间
        logger.info(f'{
       epoch - start_epoch + 1} epochs completed in {
       (time.time() - t0) / 3600:.3f} hours.\n')
        # 可视化训练结果: results1.png   confusion_matrix.png 以及('F1', 'PR', 'P', 'R')曲线变化  日志信息
        if plots:
            plot_results(save_dir=save_dir)  # save as results1.png
            plot_results_overlay()  # save as results.png
            if loggers['wandb']:
                files = ['results1.png', 'confusion_matrix.png', *[f'{
       x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
                wandb_logger.log({
     "Results": [loggers['wandb'].Image(str(save_dir / f), caption=f) for f in files
                                              if (save_dir / f).exists()]})

        # coco评价??? 只在coco数据集才会运行  一般用不到
        if not evolve:
            if is_coco:  # COCO dataset
                for m in [last, best] if best.exists() else [last]:  # speed, mAP tests
                    results, _, _ = val.run(data_dict,
                                            batch_size=batch_size // WORLD_SIZE * 2,
                                            imgsz=imgsz_test,
                                            conf_thres=0.001,
                                            iou_thres=0.7,
                                            model=attempt_load(m, device).half(),
                                            single_cls=single_cls,
                                            dataloader=testloader,
                                            save_dir=save_dir,
                                            save_json=True,
                                            plots=False)

            # Strip optimizers
            # 模型训练完后, strip_optimizer函数将optimizer从ckpt中删除
            # 并对模型进行model.half() 将Float32->Float16 这样可以减少模型大小, 提高inference速度
            for f in last, best:
                if f.exists():
                    strip_optimizer(f)  # strip optimizers
            # Log the stripped model
            if loggers['wandb']:
                loggers['wandb'].log_artifact(str(best if best.exists() else last), type='model',
                                              name='run_' + wandb_logger.wandb_run.id + '_model',
                                              aliases=['latest', 'best', 'stripped'])
        wandb_logger.finish_run()  # 关闭wandb_logger
    # 释放显存
    torch.cuda.empty_cache()

    return results

4、run

这个函数使得支持指令执行这个脚本。

def run(**kwargs):
    # 支持指令执行这个脚本   封装train接口
    # Usage: import train; train.run(imgsz=320, weights='yolov5m.pt')
    opt = parse_opt(True)
    for k, v in kwargs.items():
        setattr(opt, k, v)
    main(opt)

总结

总体上代码还是比较简单的,抓住 数据 + 模型 + 学习率 + 优化器 + 训练这五步即可。

Reference

Github: Laughing-q/yolov5_annotations

CSDN Liaojiajia-2020: YOLOv5代码详解(train.py部分)

– 2021.08.17

你可能感兴趣的:(YOLOV5-5.x,源码讲解,yolov5-5.x,源码解读,train.py)