机器学习实战——人脸表情识别

基于keras创建及训练卷积神经网络,OpenCV对图像数据集进行处理,pyqt5对GUI界面的创建。

        本项目基于python设计对于人脸表情的情绪识别,通过使用日本拍摄的jaffe数据集对卷积神经网络进行训练,并保存训练的参数对新的人脸情绪进行识别,并设计出GUI窗口方便使用。

        本项目采用的数据集是日本的jaffe数据集,该数据库包含213张由10位日本女模特构成的7种面部表情(6种基本面部表情+ 1个中性)的图像,图片为256x256灰度图,这7种表情分别是sad(悲伤)、happy(开心)、angry(生气)、disgust(厌恶)、surprise(惊讶)、fear(恐惧)、neutral(中性),每组大概20张样图。

        表1是本次所用的包以及开发工具:

名称

版本

作用

python

3.8.3

开发语言

Keras

3.4.3

构建卷积神经网络并训练卷积神经网络

pyqt5

5.15.4

构建GUI窗口

numpy

1.18.5

数据处理

pandas

1.0.5

读取数据文件

OpenCV

4.5.1

调用训练好的xml文件得出脸部数据

表1 开发工具介绍

一、环境搭建及数据获取

        本人采用anaconda进行搭建,anaconda具备了大多数我们所需要的第三方库,而另外需要的OpenCV和qt-designer则需另外下载。

        可打开Anaconda Prompt 输入如下命令进行下载OpenCV以及qt-designer。

pip install opencv-python
pip install PyQt5-tool

         获取数据集

二、数据预处理

        由于所得的数据集为人上身照片(头到肩部的灰度图片),项目任务是通过脸部数据进行识别,在训练卷积神经网络时,头发以及肩部动作等难免会对训练过程造成干扰,通过利用OpenCV训练好的xml文件对人脸进行识别,利用os库对数据集文件进行读取,分别获得人脸部主要数据,将其获取后存为csv文件并记录下对应的标签数据。emotion为标签,对应的情绪字典为emotion = {0: 'Angry', 1: 'Disgust', 2: 'Fear', 3: 'Happy', 4: 'Sad', 5: 'Surprise', 6: 'Neutral'},pixels为所取像素点数据。

import os
import cv2
import numpy as np
import csv

'''
对jaffe数据集进行人脸识别,裁剪并保存得到大小为48x48的图片
整个数据库一共有213张图像,10个人,全部都是女性,每个人做出7种表情,这7种表情分别是sad、happy、angry、disgust、surprise、fear、neutral,每组大概20张样图。
该数据库包含213张由10位日本女模特构成的7种面部表情(6种基本面部表情+ 1个中性)的图像。图片为256x256灰度级
'''
# 获取脸部数据
def detect(img, cascade):
    rects = cascade.detectMultiScale(img, scaleFactor=1.2, minNeighbors=3,
                                     minSize=(30, 30))  # ,flags=cv2.CASCADE_SCALE_IMAGE
    if len(rects) == 0:
        return []
    rects[:, 2:] += rects[:, :2]
    return rects

cascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
cascade.load("haarcascade_frontalface_default.xml")

f = "..\\jaffe"
fs = os.listdir(f)
data = np.zeros([213, 48 * 48], dtype=np.uint8)
label = np.zeros([213], dtype=int)

i = 0
for f1 in fs:
    tmp_path = os.path.join(f, f1)
    for f2 in os.listdir(tmp_path):
        tmp_path2 = os.path.join(f1, f2)
        if not os.path.isdir(tmp_path2):
            tmp_path3 = tmp_path + '\\' + f2
            img = cv2.imread(tmp_path3, 0)
            rects = detect(img, cascade)
            for x1, y1, x2, y2 in rects:
                cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 255), 2)
                # 调整截取脸部区域大小
                img_roi = np.uint8([y2 - y1, x2 - x1])
                roi = img[y1:y2, x1:x2]
                img_roi = roi
                re_roi = cv2.resize(img_roi, (48, 48))
                # 获得表情label
                img_label = f1
                #print(img_label)
                if img_label == 'anger':
                    label[i] = 0
                elif img_label == 'disgust':
                    label[i] = 1
                elif img_label == 'fear':
                    label[i] = 2
                elif img_label == 'happiness':
                    label[i] = 3
                elif img_label == 'sadness':
                    label[i] = 4
                elif img_label == 'surprise':
                    label[i] = 5
                elif img_label == 'neutral':
                    label[i] = 6
                else:
                    print("get label error.......\n")
                data[i][0:48 * 48] = np.ndarray.flatten(re_roi)
                i = i + 1
with open(r"./jaffe_face.csv", "w") as csvfile:
    writer = csv.writer(csvfile)
    writer.writerow(['emotion', 'pixels'])
    for i in range(len(label)):
        data_list = list(data[i])
        b = " ".join(str(x) for x in data_list)
        l = np.hstack([label[i], b])
        writer.writerow(l)

三、卷积神经网络的搭建及训练

        搭建的卷积神经网络为两层卷积核大小为5×5卷积层,激活函数为relu、再经过两层池化层进行下采样去除冗余信息,最后展开为全连接层,其激活函数为relu,再经过Dropout随机丢弃50%的信息,防止过拟合、提升模型泛化能力,最后经过输出通道为7、激活函数为softmax的全连接层,分别得出对应情绪字典的各类情绪分类。

        训练过程中采用的损失函数为categorical_crossentropy,优化器采用rmsprop。

        (1)Relu激活函数:

f(x)=\left\{\begin{matrix} x,x> 0& \\ 0,x< 0 & \end{matrix}\right.

        性质:①非线性函数,单侧是线性函数

        虽然ReLU在数学上的定义x=0处是不可导的,但是实际中为了解决这个问题直接将处的导数设置为1 ,当x>0时,f’(x) = 1, 当x<=0时,f’(x) = 0。

         优点:

        ①计算量小,相对于sigmoid和Tanh激活函数需要进行指数运算,使用ReLu的计算量小很多,在使用反向传播计算的时候也要收敛更更快。

        ②缓解了在深层网络中使用sigmoid和Tanh激活函数造成了梯度消失的现象(右侧导数恒为1)。

        ③缓解过拟合的问题。由于函数的会使小于零的值变成零,使得一部分神经元的输出为0,造成网络的稀疏性,减少参数相互依赖的关系缓解过拟合的问题。

        缺点:

        ①造成神经元的“死亡”;

        ②ReLU的输出不是0均值的;

        (2)Softmax激活函数:

S{i_{}}=\frac{e^{i}}{\sum e^{j}}

        映射区间[0,1]

        主要用于:离散化概率分布

        (3)categorical_crossentropy(交叉熵损失函数):

Loss=-\sum_{i=1}^{ouput size}y_{i}\cdot log \hat{y_{i}}

        可以发现,因为y_{i}要么是0,要么是1。而当y_{i}等于0时,结果就是0,当且仅当y_{i}等于1时,才会有结果。也就是说categorical_crossentropy只专注于一个结果,因而它一般配合softmax做单标签分类。

(4)优化器rmsprop:

RMSProp算法

Require:全局学习率lr,衰减速率ρ

Require:初始参数θ

Require:小参数δ,通常设为10^{-6}(用于被小数除时的数值稳定)

        初始化积累变量r=0

while没有达到停止准则do

        从训练集中采\small \begin{Bmatrix} x^{(1)}, & ...,& x^{(m)} \end{Bmatrix}包含m个样本的小批量,对应目标为y^{(i)}

        计算梯度:\small g\leftarrow \frac{1}{m}\triangledown _{\theta }\sum L\textrm{}(f(x^{(i)};\theta ),y^{(i)})

        累积平方梯度:\small r\leftarrow\rho r+(1-\rho )g\bigodot g

        计算参数更新:\small \Delta \theta =-\frac{lr}{\sqrt{\delta +r}}\bigodot g  其中\small \frac{1}{\sqrt{\delta +r}}逐元素应用

        应用更新:\small \theta \leftarrow \theta +\Delta \theta

end while

 表2 RMSProp算法介绍

import numpy as np
import pandas as pd
from keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten
from keras.models import Sequential
from keras.preprocessing.image import ImageDataGenerator

# 表情类别
emotion = {0: 'Angry', 1: 'Disgust', 2: 'Fear', 3: 'Happy', 4: 'Sad', 5: 'Surprise', 6: 'Neutral'}

# 读取数据
data = pd.read_csv(r'jaffe_face.csv', dtype='a')
# 读取标签列表
label = np.array(data['emotion'])
# 图像列表
img_data = np.array(data['pixels'])
# 图像数量
N_sample = label.size
# (213, 2304)
Face_data = np.zeros((N_sample, 48 * 48))
# (213, 7)
Face_label = np.zeros((N_sample, 7), dtype=np.float)

for i in range(N_sample):
    x = img_data[i]
    x = np.fromstring(x, dtype=float, sep=' ')
    x = x / x.max()
    Face_data[i] = x
    Face_label[i, int(label[i])] = 1.0

# 训练数据数量
train_num = 200
# 测试数据数量
test_num = 13

# 训练数据
train_x = Face_data[0:train_num, :]
train_y = Face_label[0:train_num, :]
train_x = train_x.reshape(-1, 48, 48, 1)  # reshape

# 测试数据
test_x = Face_data[train_num: train_num + test_num, :]
test_y = Face_label[train_num: train_num + test_num, :]
test_x = test_x.reshape(-1, 48, 48, 1)  # reshape

# 序贯模型
model = Sequential()

model.add(Conv2D(32, (5, 5), activation='relu', input_shape=(48, 48, 1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (5, 5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(7, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])

# 扩增数据
datagen = ImageDataGenerator(
    featurewise_center=True,
    featurewise_std_normalization=True,
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    horizontal_flip=True)
datagen.fit(train_x)
model.fit_generator(datagen.flow(train_x, train_y, batch_size=10), steps_per_epoch=len(train_x), epochs=20)

model.fit(train_x, train_y, batch_size=10, epochs=100)
score = model.evaluate(test_x, test_y, batch_size=10)
print("score:", score)

model.save("keras.h5")
model.summary()

四、GUI窗口的创建与预测功能的实现

        下载好的qt designer在存储路径D:\Anaconda3\Lib\site-packages\pyqt5-tools\下,利用qt designer设计出大体框架,按钮布局等,生成ui文件,利用powershell命令将其转化为py文件。

        通过将训练好的模型参数保存下来,保存为keras.h5文件,再将其加载入模型中对新图片进行预测,同样,新图片结果由OpenCV训练好的xml文件得出脸部数据,将处理后的数据载入对新图片进行训练,得出最终结果,再根据字典{0: 'Angry', 1: 'Disgust', 2: 'Fear', 3: 'Happy', 4: 'Sad', 5: 'Surprise', 6: 'Neutral'}对其进行判别属于何种种类。

机器学习实战——人脸表情识别_第1张图片

图1 GUI布局示例

 图2 PowerShell命令转换文件

         如若不想下载或下载qt designer失败,也可通过以下代码实现对GUI的构建。

# -*- coding: utf-8 -*-

# Form implementation generated from reading ui file 'GUI.ui'
#
# Created by: PyQt5 UI code generator 5.15.4
#
# WARNING: Any manual changes made to this file will be lost when pyuic5 is
# run again.  Do not edit this file unless you know what you are doing.

# 此处代码仅构建出GUI窗口的布局,无法运行展示,需调用才可展示
from PyQt5 import QtCore, QtGui, QtWidgets


class Ui_GUI(object):
    def setupUi(self, GUI):
        GUI.setObjectName("GUI")
        GUI.resize(629, 434)
        self.predict_bottom = QtWidgets.QPushButton(GUI)
        self.predict_bottom.setGeometry(QtCore.QRect(210, 120, 101, 28))
        self.predict_bottom.setObjectName("predict_bottom")
        self.carema = QtWidgets.QFrame(GUI)
        self.carema.setGeometry(QtCore.QRect(40, 10, 131, 171))
        self.carema.setFrameShape(QtWidgets.QFrame.Box)
        self.carema.setFrameShadow(QtWidgets.QFrame.Raised)
        self.carema.setObjectName("carema")
        self.cameraimage = QtWidgets.QLabel(self.carema)
        self.cameraimage.setGeometry(QtCore.QRect(1, 0, 131, 171))
        self.cameraimage.setText("")
        self.cameraimage.setObjectName("cameraimage")
        self.open_camera_bottom = QtWidgets.QPushButton(GUI)
        self.open_camera_bottom.setGeometry(QtCore.QRect(210, 60, 101, 28))
        self.open_camera_bottom.setObjectName("open_camera_bottom")
        self.localimage = QtWidgets.QFrame(GUI)
        self.localimage.setGeometry(QtCore.QRect(40, 210, 131, 171))
        self.localimage.setFrameShape(QtWidgets.QFrame.Box)
        self.localimage.setFrameShadow(QtWidgets.QFrame.Raised)
        self.localimage.setObjectName("localimage")
        self.showimage = QtWidgets.QLabel(self.localimage)
        self.showimage.setGeometry(QtCore.QRect(0, 0, 131, 171))
        self.showimage.setText("")
        self.showimage.setObjectName("showimage")
        self.textlabel = QtWidgets.QLabel(GUI)
        self.textlabel.setGeometry(QtCore.QRect(400, 40, 61, 16))
        self.textlabel.setAutoFillBackground(False)
        self.textlabel.setObjectName("textlabel")
        self.result = QtWidgets.QFrame(GUI)
        self.result.setGeometry(QtCore.QRect(380, 20, 211, 361))
        self.result.setFrameShape(QtWidgets.QFrame.Box)
        self.result.setFrameShadow(QtWidgets.QFrame.Raised)
        self.result.setObjectName("result")
        self.textlabel_frame = QtWidgets.QFrame(self.result)
        self.textlabel_frame.setGeometry(QtCore.QRect(10, 10, 81, 31))
        self.textlabel_frame.setFrameShape(QtWidgets.QFrame.Box)
        self.textlabel_frame.setFrameShadow(QtWidgets.QFrame.Raised)
        self.textlabel_frame.setObjectName("textlabel_frame")
        self.resultframe = QtWidgets.QFrame(self.result)
        self.resultframe.setGeometry(QtCore.QRect(10, 50, 191, 301))
        self.resultframe.setFrameShape(QtWidgets.QFrame.Box)
        self.resultframe.setFrameShadow(QtWidgets.QFrame.Raised)
        self.resultframe.setObjectName("resultframe")
        self.resultlabel = QtWidgets.QLabel(self.resultframe)
        self.resultlabel.setGeometry(QtCore.QRect(10, 10, 171, 281))
        self.resultlabel.setText("")
        self.resultlabel.setObjectName("resultlabel")
        self.select_image = QtWidgets.QPushButton(GUI)
        self.select_image.setGeometry(QtCore.QRect(210, 240, 101, 28))
        self.select_image.setObjectName("select_image")
        self.predict_local_bottom = QtWidgets.QPushButton(GUI)
        self.predict_local_bottom.setGeometry(QtCore.QRect(212, 300, 101, 28))
        self.predict_local_bottom.setObjectName("predict_local_bottom")
        self.label = QtWidgets.QLabel(GUI)
        self.label.setGeometry(QtCore.QRect(40, 390, 131, 41))
        self.label.setText("")
        self.label.setObjectName("label")

        self.retranslateUi(GUI)
        QtCore.QMetaObject.connectSlotsByName(GUI)

    def retranslateUi(self, GUI):
        _translate = QtCore.QCoreApplication.translate
        GUI.setWindowTitle(_translate("GUI", "Form"))
        self.predict_bottom.setText(_translate("GUI", "预测"))
        self.open_camera_bottom.setText(_translate("GUI", "打开摄像头"))
        self.textlabel.setText(_translate("GUI", "预测结果"))
        self.select_image.setText(_translate("GUI", "浏览本地图片"))
        self.predict_local_bottom.setText(_translate("GUI", "预测"))

         将训练好的权重文件加载到神经网络中,对新的图片进行预测,即可得到对新表情的预测。

from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
import cv2
import numpy as np

test_img = np.zeros([1, 48 * 48], dtype=np.uint8)

def main(imgpath):
    test_image = cv2.imread(imgpath, 0)
    rects = detect(test_image, cascade)
    for x1, y1, x2, y2 in rects:
        cv2.rectangle(test_image, (x1, y1), (x2, y2), (0, 255, 255), 2)
        # 调整截取脸部区域大小
        img_roi = np.uint8([y2 - y1, x2 - x1])
        roi = test_image[y1:y2, x1:x2]
        img_roi = roi
        re_roi = cv2.resize(img_roi, (48, 48))
        global test_img
        test_img[0][0:48 * 48] = np.ndarray.flatten(re_roi)
    data_img = np.array(test_img)
    Face_data = np.zeros((1, 48 * 48))
    x = data_img[0]
    Face_data[0] = x
    test_x = Face_data[:]
    test_x = test_x.reshape(-1, 48, 48, 1)
    model = Sequential()
    model.add(Conv2D(32, (5, 5), activation='relu', input_shape=(48, 48, 1)))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Conv2D(64, (5, 5), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Flatten())
    model.add(Dense(1024, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(7, activation='softmax'))

    model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
    model.load_weights("keras.h5")
    accuracy = model.predict_classes(test_x)
    print(accuracy)
    if accuracy == 0:
        result = "生气"
    elif accuracy == 1:
        result = "厌恶"
    elif accuracy == 2:
        result = "恐惧"
    elif accuracy == 3:
        result = "开心"
    elif accuracy == 4:
        result = "悲伤"
    elif accuracy == 5:
        result = "惊讶"
    elif accuracy == 6:
        result = "中性"
    return result

cascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
cascade.load("haarcascade_frontalface_default.xml")

def detect(img, cascade):
    rects = cascade.detectMultiScale(img, scaleFactor=1.2, minNeighbors=3,
                                     minSize=(30, 30))  # ,flags=cv2.CASCADE_SCALE_IMAGE
    if len(rects) == 0:
        return []
    rects[:, 2:] += rects[:, :2]
    return rects

if __name__ == '__main__':
    main()

        再通过调用构建好的GUI进行预测即可非常直观地对图片进行预测了。

import time
from GUI import Ui_GUI
from PyQt5 import QtCore, QtGui, QtWidgets
from PyQt5.QtWidgets import QApplication, QMainWindow, QFileDialog
import sys
import cv2
import predict


class Ui_GUI(QMainWindow, Ui_GUI):
    def __init__(self):
        super(Ui_GUI, self).__init__()
        self.setupUi(self)
        self.retranslateUi(self)
        self.select_image.clicked.connect(self.open_local_image)
        self.timer_camera = QtCore.QTimer()  # 初始化定时器
        self.cap = cv2.VideoCapture()  # 初始化摄像头
        self.CAM_NUM = 0
        self.slot_init()
        self.predict_local_bottom.clicked.connect(self.test)

    def open_local_image(self):
        imgName, imgType = QFileDialog.getOpenFileName(self, "浏览本地图片", "", "*.jpg;;*.png;;All Files(*)")
        jpg = QtGui.QPixmap(imgName).scaled(self.showimage.width(), self.showimage.height())
        self.showimage.setPixmap(jpg)
        self.label.setText(str(imgName))

    def slot_init(self):  # 建立通信连接
        self.open_camera_bottom.clicked.connect(self.button_open_camera_click)
        self.timer_camera.timeout.connect(self.show_camera)
        self.predict_bottom.clicked.connect(self.capx)

    def button_open_camera_click(self):
        if self.timer_camera.isActive() == False:
            flag = self.cap.open(self.CAM_NUM)
            if flag == False:
                msg = QtWidgets.QMessageBox.Warning(self, u'Warning', u'请检测相机与电脑是否连接正确',
                                                    buttons=QtWidgets.QMessageBox.Ok,
                                                    defaultButton=QtWidgets.QMessageBox.Ok)
            else:
                self.timer_camera.start(30)
                self.open_camera_bottom.setText(u'关闭摄像头')
        else:
            self.timer_camera.stop()
            self.cap.release()
            self.cameraimage.clear()
            self.open_camera_bottom.setText(u'打开摄像头')

    def show_camera(self):
        flag, self.image = self.cap.read()
        show = cv2.resize(self.image, (140, 180))
        # opencv格式不能直接显示,需要用下面代码转换一下
        show = cv2.cvtColor(show, cv2.COLOR_BGR2RGB)
        self.showImage = QtGui.QImage(show.data, show.shape[1], show.shape[0], QtGui.QImage.Format_RGB888)
        self.cameraimage.setPixmap(QtGui.QPixmap.fromImage(self.showImage))

    def capx(self):
        FName = fr"images\cap{time.strftime('%Y%m%d%H%M%S', time.localtime())}"
        print(FName)
        self.cameraimage.setPixmap(QtGui.QPixmap.fromImage(self.showImage))
        self.showImage.save(FName + ".jpg", "JPG", 100)
        cv2.imwrite("test.jpg", self.image)
        impath = "test.jpg"
        self.resultlabel.setText((str(predict.main(impath))))

    def test(self):
        imgpath = self.label.text()
        self.resultlabel.setText(str(predict.main(imgpath)))


if __name__ == '__main__':
    app = QApplication(sys.argv)
    ui = Ui_GUI()
    ui.show()
    sys.exit(app.exec_())

五、效果预览

机器学习实战——人脸表情识别_第2张图片

 图3 运行主界面

机器学习实战——人脸表情识别_第3张图片

图4 读取本地图片预测效果 

机器学习实战——人脸表情识别_第4张图片

 图5 打开相机预测效果

你可能感兴趣的:(python,人脸识别,机器学习,深度学习,卷积神经网络)