继承(inheritance)机制是面向对象程序设计使代码可以复用的重要的手段,它允许程序员在保持原有类特性的基础上进行扩展,增加功能,这样产生新的类,称为派生类。
继承呈现了面向对象程序设计的层次结构,体现了由简单到复杂的认知过程。以前我们接触的复用都是函数复用,而继承便是类设计层次的复用。
例如,以下代码中Student类和Teacher类就继承了Person类。
//父类
class Person
{
public:
void Print()
{
cout << "name:" << _name << endl;
cout << "age:" << _age << endl;
}
protected:
string _name = "张三"; //姓名
int _age = 18; //年龄
};
//子类
class Student : public Person
{
protected:
int _stuid; //学号
};
//子类
class Teacher : public Person
{
protected:
int _jobid; //工号
};
继承后,父类Person的成员,包括成员函数和成员变量,都会变成子类的一部分,也就是说,子类Student和Teacher复用了父类Person的成员。
继承的定义格式如下:
说明: 在继承当中,父类也称为基类,子类是由基类派生而来的,所以子类又称为派生类。
我们知道,访问限定符有以下三种:
而继承的方式也有类似的三种:
基类当中被不同访问限定符修饰的成员,以不同的继承方式继承到派生类当中后,该成员最终在派生类当中的访问方式将会发生变化。
类成员/继承方式 | public继承 | protected继承 | private继承 |
---|---|---|---|
基类的public成员 | 派生类的public成员 | 派生类的protected成员 | 派生类的private成员 |
基类的protected成员 | 派生类的protected成员 | 派生类的protected成员 | 派生类的private成员 |
基类的private成员 | 在派生类中不可见 | 在派生类中不可见 | 在派生类中不可见 |
稍作观察,实际上基类成员访问方式的变化规则也不是无迹可寻的,我们可以认为三种访问限定符的权限大小为:public > protected > private,基类成员访问方式的变化规则如下:
基类的private成员在派生类当中不可见是什么意思?
这句话的意思是,我们无法在派生类当中访问基类的private成员。例如,虽然Student类继承了Person类,但是我们无法在Student类当中访问Person类当中的private成员_name。
//基类
class Person
{
private:
string _name = "张三"; //姓名
};
//派生类
class Student : public Person
{
public:
void Print()
{
//在派生类当中访问基类的private成员,error!
cout << _name << endl;
}
protected:
int _stuid; //学号
};
也就是说,基类的private成员无论以什么方式继承,在派生类中都是不可见的,这里的不可见是指基类的私有成员虽然被继承到了派生类对象中,但是语法上限制派生类对象不管在类里面还是类外面都不能去访问它。
因此,基类的private成员在派生类中是不能被访问的,如果基类成员不想在类外直接被访问,但需要在派生类中能访问,就需要定义为protected,由此可以看出,protected限定符是因继承才出现的。
注意: 在实际运用中一般使用的都是public继承,几乎很少使用protected和private继承,也不提倡使用protected和private继承,因为使用protected和private继承下来的成员都只能在派生类的类里面使用,实际中扩展维护性不强。
在使用继承的时候也可以不指定继承方式,使用关键字class时默认的继承方式是private,使用struct时默认的继承方式是public。
例如,在关键字为class的派生类当中,所继承的基类成员_name的访问方式变为private。
//基类
class Person
{
public:
string _name = "张三"; //姓名
};
//派生类
class Student : Person //默认为private继承
{
protected:
int _stuid; //学号
};
而在关键字为struct的派生类当中,所继承的基类成员_name的访问方式仍为public。
//基类
class Person
{
public:
string _name = "张三"; //姓名
};
//派生类
struct Student : Person //默认为public继承
{
protected:
int _stuid; //学号
};
注意: 虽然继承时可以不指定继承方式而采用默认的继承方式,但还是最好显示的写出继承方式。
派生类对象可以赋值给基类的对象、基类的指针以及基类的引用,因为在这个过程中,会发生基类和派生类对象之间的赋值转换。
例如,对于以下基类及其派生类。
//基类
class Person
{
protected:
string _name; //姓名
string _sex; //性别
int _age; //年龄
};
//派生类
class Student : public Person
{
protected:
int _stuid; //学号
};
代码当中可以出现以下逻辑:
Student s;
Person p = s; //派生类对象赋值给基类对象
Person* ptr = &s; //派生类对象赋值给基类指针
Person& ref = s; //派生类对象赋值给基类引用
对于这种做法,有个形象的说法叫做切片/切割,寓意把派生类中基类那部分切来赋值过去。
派生类对象赋值给基类对象图示:
派生类对象赋值给基类指针图示:
派生类对象赋值给基类引用图示:
注意: 基类对象不能赋值给派生类对象,基类的指针可以通过强制类型转换赋值给派生类的指针,但是此时基类的指针必须是指向派生类的对象才是安全的。
在继承体系中的基类和派生类都有独立的作用域。若子类和父类中有同名成员,子类成员将屏蔽父类对同名成员的直接访问,这种情况叫隐藏,也叫重定义。
例如,对于以下代码,访问成员_num时将访问到子类当中的_num。
#include
#include
using namespace std;
//父类
class Person
{
protected:
int _num = 111;
};
//子类
class Student : public Person
{
public:
void fun()
{
cout << _num << endl;
}
protected:
int _num = 999;
};
int main()
{
Student s;
s.fun(); //999
return 0;
}
若此时我们就是要访问父类当中的_num成员,我们可以使用作用域限定符进行指定访问。
void fun()
{
cout << Person::_num << endl; //指定访问父类当中的_num成员
}
需要注意的是,如果是成员函数的隐藏,只需要函数名相同就构成隐藏。
例如,对于以下代码,调用成员函数fun时将直接调用子类当中的fun,若想调用父类当中的fun,则需使用作用域限定符指定类域。
#include
#include
using namespace std;
//父类
class Person
{
public:
void fun(int x)
{
cout << x << endl;
}
};
//子类
class Student : public Person
{
public:
void fun(double x)
{
cout << x << endl;
}
};
int main()
{
Student s;
s.fun(3.14); //直接调用子类当中的成员函数fun
s.Person::fun(20); //指定调用父类当中的成员函数fun
return 0;
}
特别注意: 代码当中,父类中的fun和子类中的fun不是构成函数重载,因为函数重载要求两个函数在同一作用域,而此时这两个fun函数并不在同一作用域。为了避免类似问题,实际在继承体系当中最好不要定义同名的成员。
默认成员函数,即我们不写编译器会自动生成的函数,类当中的默认成员函数有以下六个:
下面我们看看派生类当中的默认成员函数,与普通类的默认成员函数的不同之处。
例如,我们以下面这个Person类为基类。
//基类
class Person
{
public:
//构造函数
Person(const string& name = "peter")
:_name(name)
{
cout << "Person()" << endl;
}
//拷贝构造函数
Person(const Person& p)
:_name(p._name)
{
cout << "Person(const Person& p)" << endl;
}
//赋值运算符重载函数
Person& operator=(const Person& p)
{
cout << "Person& operator=(const Person& p)" << endl;
if (this != &p)
{
_name = p._name;
}
return *this;
}
//析构函数
~Person()
{
cout << "~Person()" << endl;
}
private:
string _name; //姓名
};
我们用该基类派生出Student类,Student类当中的默认成员函数的基本逻辑如下:
//派生类
class Student : public Person
{
public:
//构造函数
Student(const string& name, int id)
:Person(name) //调用基类的构造函数初始化基类的那一部分成员
, _id(id) //初始化派生类的成员
{
cout << "Student()" << endl;
}
//拷贝构造函数
Student(const Student& s)
:Person(s) //调用基类的拷贝构造函数完成基类成员的拷贝构造
, _id(s._id) //拷贝构造派生类的成员
{
cout << "Student(const Student& s)" << endl;
}
//赋值运算符重载函数
Student& operator=(const Student& s)
{
cout << "Student& operator=(const Student& s)" << endl;
if (this != &s)
{
Person::operator=(s); //调用基类的operator=完成基类成员的赋值
_id = s._id; //完成派生类成员的赋值
}
return *this;
}
//析构函数
~Student()
{
cout << "~Student()" << endl;
//派生类的析构函数会在被调用完成后自动调用基类的析构函数
}
private:
int _id; //学号
};
派生类与普通类的默认成员函数的不同之处概括为以下几点:
在编写派生类的默认成员函数时,需要注意以下几点:
destructor();
。因此,派生类和基类的析构函数也会因为函数名相同构成隐藏,若是我们需要在某处调用基类的析构函数,那么就要使用作用域限定符进行指定调用。operator=
当中调用基类的拷贝构造函数和operator=
的传参方式是一个切片行为,都是将派生类对象直接赋值给基类的引用。说明一下:
基类的构造函数、拷贝构造函数、赋值运算符重载函数我们都可以在派生类当中自行进行调用,而基类的析构函数是当派生类的析构函数被调用后由编译器自动调用的,我们若是自行调用基类的构造函数就会导致基类被析构多次的问题。
我们知道,创建派生类对象时是先创建的基类成员再创建的派生类成员,编译器为了保证析构时先析构派生类成员再析构基类成员的顺序析构,所以编译器会在派生类的析构函数被调用后自动调用基类的析构函数。
友元关系不能继承,也就是说基类的友元可以访问基类的私有和保护成员,但是不能访问派生类的私有和保护成员。
例如,以下代码中Display函数是基类Person的友元,当时Display函数不是派生类Student的友元,即Display函数无法访问派生类Student当中的私有和保护成员。
#include
#include
using namespace std;
class Student;
class Person
{
public:
//声明Display是Person的友元
friend void Display(const Person& p, const Student& s);
protected:
string _name; //姓名
};
class Student : public Person
{
protected:
int _id; //学号
};
void Display(const Person& p, const Student& s)
{
cout << p._name << endl; //可以访问
cout << s._id << endl; //无法访问
}
int main()
{
Person p;
Student s;
Display(p, s);
return 0;
}
若想让Display函数也能够访问派生类Student的私有和保护成员,只能在派生类Student当中进行友元声明。
class Student : public Person
{
public:
//声明Display是Student的友元
friend void Display(const Person& p, const Student& s);
protected:
int _id; //学号
};
若基类当中定义了一个static静态成员变量,则在整个继承体系里面只有一个该静态成员。无论派生出多少个子类,都只有一个static成员实例。
例如,在基类Person当中定义了静态成员变量_count,尽管Person又继承了派生类Student和Graduate,但在整个继承体系里面只有一个该静态成员。
我们若是在基类Person的构造函数和拷贝构造函数当中设置_count进行自增,那么我们就可以随时通过_count来获取该时刻已经实例化的Person、Student以及Graduate对象的总个数。
#include
#include
using namespace std;
//基类
class Person
{
public:
Person()
{
_count++;
}
Person(const Person& p)
{
_count++;
}
protected:
string _name; //姓名
public:
static int _count; //统计人的个数。
};
int Person::_count = 0; //静态成员变量在类外进行初始化
//派生类
class Student : public Person
{
protected:
int _stuNum; //学号
};
//派生类
class Graduate : public Person
{
protected:
string _seminarCourse; //研究科目
};
int main()
{
Student s1;
Student s2(s1);
Student s3;
Graduate s4;
cout << Person::_count << endl; //4
cout << Student::_count << endl; //4
return 0;
}
此时我们也可以通过打印Person类和Student类当中静态成员_count的地址来证明它们就是同一个变量。
cout << &Person::_count << endl; //00F1F320
cout << &Student::_count << endl; //00F1F320
单继承:一个子类只有一个直接父类时称这个继承关系为单继承。
多继承:一个子类有两个或两个以上直接父类时称这个继承关系为多继承。
菱形继承:菱形继承是多继承的一种特殊情况。
从菱形继承的模型构造就可以看出,菱形继承的继承方式存在数据冗余和二义性的问题。
例如,对于以上菱形继承的模型,当我们实例化出一个Assistant对象后,访问成员时就会出现二义性问题。
#include
#include
using namespace std;
class Person
{
public:
string _name; //姓名
};
class Student : public Person
{
protected:
int _num; //学号
};
class Teacher : public Person
{
protected:
int _id; //职工编号
};
class Assistant : public Student, public Teacher
{
protected:
string _majorCourse; //主修课程
};
int main()
{
Assistant a;
a._name = "peter"; //二义性:无法明确知道要访问哪一个_name
return 0;
}
Assistant对象是多继承的Student和Teacher,而Student和Teacher当中都继承了Person,因此Student和Teacher当中都有_name成员,若是直接访问Assistant对象的_name成员会出现访问不明确的报错。
对于此,我们可以显示指定访问Assistant哪个父类的_name成员。
//显示指定访问哪个父类的成员
a.Student::_name = "张同学";
a.Teacher::_name = "张老师";
虽然该方法可以解决二义性的问题,但仍然不能解决数据冗余的问题。因为在Assistant的对象在Person成员始终会存在两份。
为了解决菱形继承的二义性和数据冗余问题,出现了虚拟继承。如前面说到的菱形继承关系,在Student和Teacher继承Person是使用虚拟继承,即可解决问题。
虚拟继承代码如下:
#include
#include
using namespace std;
class Person
{
public:
string _name; //姓名
};
class Student : virtual public Person //虚拟继承
{
protected:
int _num; //学号
};
class Teacher : virtual public Person //虚拟继承
{
protected:
int _id; //职工编号
};
class Assistant : public Student, public Teacher
{
protected:
string _majorCourse; //主修课程
};
int main()
{
Assistant a;
a._name = "peter"; //无二义性
return 0;
}
此时就可以直接访问Assistant对象的_name成员了,并且之后就算我们指定访问Assistant的Student父类和Teacher父类的_name成员,访问到的都是同一个结果,解决了二义性的问题。
cout << a.Student::_name << endl; //peter
cout << a.Teacher::_name << endl; //peter
而我们打印Assistant的Student父类和Teacher父类的_name成员的地址时,显示的也是同一个地址,解决了数据冗余的问题。
cout << &a.Student::_name << endl; //0136F74C
cout << &a.Teacher::_name << endl; //0136F74C
在此之前,我们先看看不使用菱形虚拟继承时,以下菱形继承当中D类对象的各个成员在内存当中的分布情况。
#include
using namespace std;
class A
{
public:
int _a;
};
class B : public A
{
public:
int _b;
};
class C : public A
{
public:
int _c;
};
class D : public B, public C
{
public:
int _d;
};
int main()
{
D d;
d.B::_a = 1;
d.C::_a = 2;
d._b = 3;
d._c = 4;
d._d = 5;
return 0;
}
通过内存窗口,我们可以看到D类对象当中各个成员在内存当中的分布情况如下:
也就是说,D类对象当中各个成员在内存当中的分布情况如下:
这里就可以看出为什么菱形继承导致了数据冗余和二义性,根本原因就是D类对象当中含有两个_a成员。
现在我们再来看看使用菱形虚拟继承时,以下菱形继承当中D类对象的各个成员在内存当中的分布情况。
#include
using namespace std;
class A
{
public:
int _a;
};
class B : virtual public A
{
public:
int _b;
};
class C : virtual public A
{
public:
int _c;
};
class D : public B, public C
{
public:
int _d;
};
int main()
{
D d;
d.B::_a = 1;
d.C::_a = 2;
d._b = 3;
d._c = 4;
d._d = 5;
return 0;
}
通过内存窗口,我们可以看到D类对象当中各个成员在内存当中的分布情况如下:
其中D类对象当中的_a成员被放到了最后,而在原来存放两个_a成员的位置变成了两个指针,这两个指针叫虚基表指针,它们分别指向一个虚基表。
虚基表中包含两个数据,第一个数据是为多态的虚表预留的存偏移量的位置(这里我们不必关心),第二个数据就是当前类对象位置距离公共虚基类的偏移量。
也就是说,这两个指针经过一系列的计算,最终都可以找到成员_a。
我们若是将D类对象赋值给B类对象,在这个切片过程中,就需要通过虚基表中的第二个数据找到公共虚基类A的成员,得到切片后该B类对象在内存中仍然保持这种分布情况。
D d;
B b = d; //切片行为
得到切片后该B类对象当中各个成员在内存当中的分布情况如下:
其中,_a对象仍然存储在该B类对象的最后。
很多人都说C++语法复杂,其实多继承就是一个体现。有了多继承,就可能存在菱形继承,有了菱形继承就有菱形虚拟继承,底层实现就很复杂。所以一般不建议设计出菱形继承,否则代码在复杂度及性能上都容易出现问题,当菱形继承出问题时难以分析,并且会有一定的效率影响。
多继承可以认为是C++的缺陷之一,很多后来的OO(Object Oriented)语言都没有多继承,如Java。
继承和组合
继承是一种is-a的关系,也就是说每个派生类对象都是一个基类对象;而组合是一种has-a的关系,若是B组合了A,那么每个B对象中都有一个A对象。
例如,车类和宝马类就是is-a的关系,它们之间适合使用继承。
class Car
{
protected:
string _colour; //颜色
string _num; //车牌号
};
class BMW : public Car
{
public:
void Drive()
{
cout << "this is BMW" << endl;
}
};
而车和轮胎之间就是has-a的关系,它们之间则适合使用组合。
class Tire
{
protected:
string _brand; //品牌
size_t _size; //尺寸
};
class Car
{
protected:
string _colour; //颜色
string _num; //车牌号
Tire _t; //轮胎
};
若是两个类之间既可以看作is-a的关系,又可以看作has-a的关系,则优先使用组合。
原因如下:
什么是菱形继承?菱形继承的问题是什么?
菱形继承是多继承的一种特殊情况,两个子类继承同一个父类,而又有子类同时继承这两个子类,我们称这种继承为菱形继承。
菱形继承因为子类对象当中会有两份父类的成员,因此会导致数据冗余和二义性的问题。
什么是菱形虚拟继承?如何解决数据冗余和二义性?
菱形虚拟继承是指在菱形继承的腰部使用虚拟继承(virtual)的继承方式,菱形虚拟继承对于D类对象当中重复的A类成员只存储一份,然后采用虚基表指针和虚基表使得D类对象当中继承的B类和C类可以找到自己继承的A类成员,从而解决了数据冗余和二义性的问题。
继承和组合的区别?什么时候用继承?什么时候用组合?
继承是一种is-a的关系,而组合是一种has-a的关系。如果两个类之间是is-a的关系,使用继承;如果两个类之间是has-a的关系,则使用组合;如果两个类之间的关系既可以看作is-a的关系,又可以看作has-a的关系,则优先使用组合。