OSI模型、Socket、TCP、HTTP/HTTPS协议

1、OSI模型

开放式系统互联通信参考模型(Open System Interconnection Reference Model,缩写为OSI),简称为OSI模型。该模型是由ISO(国际标准化组织)定义,是个灵活稳健和可互操作的模型。
1.1 OSI七层模型的划分
OSI定义了网络互连的七层框架(物理层、数据链路层、网络层、传输层、会话层、表示层、应用层),即ISO开放互连系统参考模型。如下图。
OSI模型、Socket、TCP、HTTP/HTTPS协议_第1张图片
1.2 常见应用层协议:

协议 端口 说明
HTTP 80 超文本传输协议
HTTPS 443 HTTP+SSL,HTTP的安全版
FTP 20,21,990 文件传输协议
POP3 110 邮局协议
SMTP 25 简单邮件传输协议
telnet 23 远程终端协议

Socket是在会话层,TCP和UDP是在传输层。
OSI是一种理想的网络模型,因此一般网络系统只涉及其中的几层,很少有系统能够具有所有的7层,并完全遵循它的规定。

2、TCP/IP连接

在互联网的通信中,永远是客户端主动连接到服务端,主动与服务端断开连接。

2.1 字段定义

(1)序列号seq:占4个字节,用来标记数据段的顺序,TCP把连接中发送的所有数据字节都编上一个序号,第一个字节的编号由本地随机产生;给字节编上序号后,就给每一个报文段指派一个序号;序列号seq就是这个报文段中的第一个字节的数据编号。

(2)确认号ack:占4个字节,期待收到对方下一个报文段的第一个数据字节的序号;序列号表示报文段携带数据的第一个字节的编号;而确认号指的是期望接收到下一个字节的编号;因此当前报文段最后一个字节的编号+1即为确认号。

(3)确认ACK:占1位,仅当ACK=1时,确认号字段才有效。ACK=0时,确认号无效。

(4)同步SYN:连接建立时用于同步序号。当SYN=1,ACK=0时表示:这是一个连接请求报文段。若同意连接,则在响应报文段中使得SYN=1,ACK=1。因此,SYN=1表示这是一个连接请求,或连接接受报文。SYN这个标志位只有在TCP建产连接时才会被置1,握手完成后SYN标志位被置0。

(5)终止FIN:用来释放一个连接。FIN=1表示:此报文段的发送方的数据已经发送完毕,并要求释放运输连接。

注意:ACK、SYN和FIN这些大写的单词表示标志位,其值要么是1,要么是0;ack、seq小写的单词表示序号。
OSI模型、Socket、TCP、HTTP/HTTPS协议_第2张图片
OSI模型、Socket、TCP、HTTP/HTTPS协议_第3张图片
2.2三次握手
OSI模型、Socket、TCP、HTTP/HTTPS协议_第4张图片

OSI模型、Socket、TCP、HTTP/HTTPS协议_第5张图片

第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SENT状态,等待服务器确认;SYN:同步序列编号(Synchronize Sequence Numbers)。

第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态。

第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED(TCP连接成功)状态,完成三次握手。

2.3 四次断开
OSI模型、Socket、TCP、HTTP/HTTPS协议_第6张图片

OSI模型、Socket、TCP、HTTP/HTTPS协议_第7张图片

(1)客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。

(2)服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。

(3)客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。

(4)服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。

(5)客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2*MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB(Transmission Control Block,传输控制块,包含了数据发送双方对应的socket信息以及拥有装载数据的缓冲区)后,才进入CLOSED状态。

(6)服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,服务器撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

2.4 面试问题
【问题1】为什么连接的时候是三次握手,关闭的时候却是四次握手?
答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,“你发的FIN报文我收到了”。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。
【问题2】如果已经建立了连接,但是客户端突然出现故障了怎么办?
TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

3、SOCKET原理

3.1套接字(socket)概念
套接字(socket)是通信的基石,是支持TCP/IP协议的网络通信的基本操作单元。它是网络通信过程中端点的抽象表示,包含进行网络通信必须的五种信息:连接使用的协议,本地主机的IP地址,本地进程的协议端口,远地主机的IP地址,远地进程的协议端口。

应用层通过传输层进行数据通信时,TCP会遇到同时为多个应用程序进程提供并发服务的问题。多个TCP连接或多个应用程序进程可能需要通过同一个 TCP协议端口传输数据。为了区别不同的应用程序进程和连接,许多计算机操作系统为应用程序与TCP/IP协议交互提供了套接字(Socket)接口。应用层可以和传输层通过Socket接口,区分来自不同应用程序进程或网络连接的通信,实现数据传输的并发服务。

3.2 建立socket连接
建立Socket连接至少需要一对套接字,其中一个运行于客户端,称为ClientSocket ,另一个运行于服务器端,称为ServerSocket 。

套接字之间的连接过程分为三个步骤:服务器监听,客户端请求,连接确认。

服务器监听:服务器端套接字并不定位具体的客户端套接字,而是处于等待连接的状态,实时监控网络状态,等待客户端的连接请求。

客户端请求:指客户端的套接字提出连接请求,要连接的目标是服务器端的套接字。为此,客户端的套接字必须首先描述它要连接的服务器的套接字,指出服务器端套接字的地址和端口号,然后就向服务器端套接字提出连接请求。

连接确认:当服务器端套接字监听到或者说接收到客户端套接字的连接请求时,就响应客户端套接字的请求,建立一个新的线程,把服务器端套接字的描述发给客户端,一旦客户端确认了此描述,双方就正式建立连接。而服务器端套接字继续处于监听状态,继续接收其他客户端套接字的连接请求。

3.3 SOCKET连接与TCP/IP连接
创建Socket连接时,可以指定使用的传输层协议,Socket可以支持不同的传输层协议(TCP或UDP),当使用TCP协议进行连接时,该Socket连接就是一个TCP连接。

socket则是对TCP/IP协议的封装和应用(程序员层面上)。也可以说,TPC/IP协议是传输层协议,主要解决数据 如何在网络中传输,而HTTP是应用层协议,主要解决如何包装数据。关于TCP/IP和HTTP协议的关系,网络有一段比较容易理解的介绍:

“我们在传输数据时,可以只使用(传输层)TCP/IP协议,但是那样的话,如果没有应用层,便无法识别数据内容,如果想要使传输的数据有意义,则必须使用到应用层协议,应用层协议有很多,比如HTTP、FTP、TELNET等,也可以自己定义应用层协议。WEB使用HTTP协议作应用层协议,以封装HTTP文本信息,然后使用TCP/IP做传输层协议将它发到网络上。”

我们平时说的最多的socket是什么呢,实际上socket是对TCP/IP协议的封装,Socket本身并不是协议,而是一个调用接口(API),通过Socket,我们才能使用TCP/IP协议。

实际上,Socket跟TCP/IP协议没有必然的联系。Socket编程接口在设计的时候,就希望也能适应其他的网络协议。所以说,Socket的出现只是使得程序员更方便地使用TCP/IP协议栈而已,是对TCP/IP协议的抽象,从而形成了我们知道的一些最基本的函数接口,比如create、 listen、connect、accept、send、read和write等等。网络有一段关于socket和TCP/IP协议关系的说法比较容易理解:

“TCP/IP只是一个协议栈,就像操作系统的运行机制一样,必须要具体实现,同时还要提供对外的操作接口。这个就像操作系统会提供标准的编程接口,比如win32编程接口一样,TCP/IP也要提供可供程序员做网络开发所用的接口,这就是Socket编程接口。”

实际上,传输层的TCP是基于网络层的IP协议的,而应用层的HTTP协议又是基于传输层的TCP协议的,而Socket本身不算是协议,就像上面所说,它只是提供了一个针对TCP或者UDP编程的接口。socket是对端口通信开发的工具,它要更底层一些.

3.4 Socket连接与HTTP连接
由于通常情况下Socket连接就是TCP连接,因此Socket连接一旦建立,通信双方即可开始相互发送数据内容,直到双方连接断开。但在实际网络应用中,客户端到服务器之间的通信往往需要穿越多个中间节点,例如路由器、网关、防火墙等,大部分防火墙默认会关闭长时间处于非活跃状态的连接而导致 Socket 连接断连,因此需要通过轮询告诉网络,该连接处于活跃状态。而HTTP连接使用的是“请求—响应”的方式,不仅在请求时需要先建立连接,而且需要客户端向服务器发出请求后,服务器端才能回复数据。很多情况下,需要服务器端主动向客户端推送数据,保持客户端与服务器数据的实时与同步。此时若双方建立的是Socket连接,服务器就可以直接将数据传送给客户端;若双方建立的是HTTP连接,则服务器需要等到客户端发送一次请求后才能将数据传回给客户端,因此,客户端定时向服务器端发送连接请求,不仅可以保持在线,同时也是在“询问”服务器是否有新的数据,如果有就将数据传给客户端。

4、HTTP协议

HTTP协议即超文本传送协议(Hypertext Transfer Protocol ),是Web联网的基础,也是手机联网常用的协议之一,HTTP协议是建立在TCP协议之上的一种应用。

HTTP连接最显著的特点是客户端发送的每次请求都需要服务器回送响应,在请求结束后,会主动释放连接。从建立连接到关闭连接的过程称为“一次连接”。

(1)在HTTP 1.0中,客户端的每次请求都要求建立一次单独的连接,在处理完本次请求后,就自动释放连接。

(2)在HTTP 1.1中则可以在一次连接中处理多个请求,并且多个请求可以重叠进行,不需要等待一个请求结束后再发送下一个请求。

由于HTTP在每次请求结束后都会主动释放连接,因此HTTP连接是一种“短连接”,要保持客户端程序的在线状态,需要不断地向服务器发起连接请求。通常的做法是即时不需要获得任何数据,客户端也保持每隔一段固定的时间向服务器发送一次“保持连接”的请求,服务器在收到该请求后对客户端进行回复,表明知道客户端“在线”。若服务器长时间无法收到客户端的请求,则认为客户端“下线”,若客户端长时间无法收到服务器的回复,则认为网络已经断开。

4.1 http协议的请求
http协议的报文传输的是ASCII码
请求主要分为三部分:请求行、请求头、请求体

4.1.1 请求行
第一行,包含三个信息:请求方式,url,http协议版本

GET 请求

GET /books/?sex=man&name=Professional HTTP/1.1  
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6) 
Gecko/20050225 Firefox/1.0.1  
Connection: Keep-Alive

POST 请求

 POST / HTTP/1.1
 Host: www.example.com
 User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)
 Gecko/20050225 Firefox/1.0.1
 Content-Type: application/x-www-form-urlencoded
 Content-Length: 40
 Connection: Keep-Alive

 sex=man&name=Professional 

4.1.2 post和get的区别
1、url可见性:
get,参数url可见;
post,url参数不可见
2、数据传输上:
get,通过拼接url进行传递参数;
post,通过body体传输参数
3、缓存性:
get,请求是可以缓存的
post,请求不可以缓存
4、后退页面的反应
get,请求页面后退时,不产生影响
post,请求页面后退时,会重新提交请求
5、传输数据的大小
get,一般传输数据大小不超过2k-4k(根据浏览器不同,限制不一样,但相差不大)
post,请求传输数据的大小根据php.ini 配置文件设定,也可以无限大。
6、安全性
这个也是最不好分析的,原则上post肯定要比get安全,毕竟传输参数时url不可见,但也挡不住部分人闲的没事在那抓包玩。安全性个人觉得是没多大区别的,防君子不防小人就是这个道理。对传递的参数进行加密,其实都一样。

4.1.3 post和get的本质区别:
GET产生一个TCP数据包;POST产生两个TCP数据包。
对于GET方式的请求,浏览器会把http header和data一并发送出去,服务器响应200(返回数据);
而对于POST,浏览器先发送header,服务器响应100 continue,浏览器再发送data,服务器响应200 ok(返回数据)。

4.1.4 请求头
浏览器向服务器发送一些状态数据,标识数据等等
一个信息一行,包括信息名:信息值 按行分隔

User-Agent: firefox//表示发送请求的浏览器(请求代理端)是firefox
Host: shop.100.com//表示请求的主机域名(基于域名的虚拟主机就是靠这个头判断的)
Cookie:name=itcast//浏览器携带的cookie数据。
Content-Type: application/x-www-form-urlencoded
Content-Length: 40
Connection: Keep-Alive

注意,请求头信息,需要使用一个空行结束!

4.1.5 请求主体
请求代理端向服务器端,发送的请求数据!
典型的就是POST形式发送的表单数据!
get请求,没有请求主体部分!get数据是在请求行中的url上进行传递的!

4.2 http协议的响应
响应包括:响应行、响应头、响应体

HTTP/1.1 200 0K
Date: Tue,19 Nov 2013 03:08:55 GMT
Server: Apache/2. 2.22 (Win32) PHP/5.3. 13
X- -Powered -By: PHP/5. 3.13
Content-Length: 16
Content- Type: text/html

4.2.1 响应行
响应行包括:协议版本、状态码、状态消息

典型的:
1xx:消息
2xx:成功
3xx:请求被重定向
4xx:浏览器端错误
5xx:服务器端错误

典型:
500 服务器内部错误
404 请求的页面没有找到
403 没有权限
200 请求成功

4.2.2 响应头
Content-Type: text/html 内容类型,告知浏览器接下来发送的响应主体数据是什么格式!
Content-Length: 响应主体数据的长度!
Date: 响应的时间。GMT时间!
4.2.3 响应主体
主要的响应数据,在浏览器的主体区域显示的数据都是相应主体!
注意,每行,包括响应行和响应头,都需要一个 \r\n结尾

5、HTTPS协议

http协议是明文传输的,因此很容易被截取和解析,泄漏个人数据。https协议是在http和tcp之间多添加了一层,进行身份验证数据加密

5.1 密码学基础
(1)明文: 明文指的是未被加密过的原始数据。

(2)密文:明文被某种加密算法加密之后,会变成密文,从而确保原始数据的安全。密文也可以被解密,得到原始的明文。

(3)密钥:密钥是一种参数,它是在明文转换为密文或将密文转换为明文的算法中输入的参数。密钥分为对称密钥非对称密钥,分别应用在对称加密和非对称加密上。

(4)对称加密:对称加密又叫做私钥加密,即信息的发送方和接收方使用同一个密钥去加密和解密数据。

对称加密的特点是算法公开、加密和解密速度快,适合于对大数据量进行加密,常见的对称加密算法有DES、3DES、TDEA、Blowfish、RC5和IDEA

其加密过程如下:明文 + 加密算法 + 私钥 => 密文
解密过程如下: 密文 + 解密算法 + 私钥 => 明文

对称加密中用到的密钥叫做私钥,私钥表示个人私有的密钥,即该密钥不能被泄露。

其加密过程中的私钥与解密过程中用到的私钥是同一个密钥,这也是称加密之所以称之为“对称”的原因。由于对称加密的算法是公开的,所以一旦私钥被泄露,那么密文就很容易被破解,所以对称加密的缺点是密钥安全管理困难。

(5)非对称加密:非对称加密也叫做公钥加密。非对称加密与对称加密相比,其安全性更好。对称加密的通信双方使用相同的密钥,如果一方的密钥遭泄露,那么整个通信就会被破解。而非对称加密使用一对密钥,即公钥和私钥,且二者成对出现。私钥被自己保存,不能对外泄露。公钥指的是公共的密钥,任何人都可以获得该密钥。用公钥或私钥中的任何一个进行加密,用另一个进行解密。

被公钥加密过的密文只能被私钥解密,过程如下:
明文 + 加密算法 + 公钥 => 密文, 密文 + 解密算法 + 私钥 => 明文
被私钥加密过的密文只能被公钥解密,过程如下:
明文 + 加密算法 + 私钥 => 密文, 密文 + 解密算法 + 公钥 => 明文

由于加密和解密使用了两个不同的密钥,这就是非对称加密“非对称”的原因。
非对称加密的缺点是加密和解密花费时间长、速度慢,只适合对少量数据进行加密。
在非对称加密中使用的主要算法有:RSA、Elgamal、Rabin、D-H、ECC(椭圆曲线加密算法)等

你可能感兴趣的:(http,https,udp)