2021华为杯研究生数学建模竞赛B题思路分析+代码

2021年中国研究生数学建模竞赛B题

空气质量预报二次建模

大气污染系指由于人类活动或自然过程引起某些物质进入大气中,呈现足够的浓度,达到了足够的时间,并因此危害了人体的舒适、健康和福利或危害了生态环境[1]。污染防治实践表明,建立空气质量预报模型,提前获知可能发生的大气污染过程并采取相应控制措施,是减少大气污染对人体健康和环境等造成的危害,提高环境空气质量的有效方法之一。

目前常用
WRF-CMAQ模拟体系(以下简称WRF-CMAQ模型)对空气质量进行预报。WRF-CMAQ模型主要包括WRF和CMAQ两部分:WRF是一种中尺度数值天气预报系统,用于为CMAQ提供所需的气象场数据;CMAQ是一种三维欧拉大气化学与传输模拟系统,其根据来自WRF的气象信息及场域内的污染排放清单,基于物理和化学反应原理模拟污染物等的变化过程,继而得到具体时间点或时间段的预报结果。WRF和CMAQ的结构如图 1、图 2所示,详细介绍可以在附录提供的官网中进行查询。

图 1 中尺度数值天气预报系统WRF结构[2]

图 2 空气质量预测与评估系统CMAQ结构[2]

但受制于模拟的气象场以及排放清单的不确定性,以及对包括臭氧在内的污染物生成机理的不完全明晰,WRF-CMAQ预报模型的结果并不理想。故题目提出二次建模概念:即指在WRF-CMAQ等一次预报模型模拟结果的基础上,结合更多的数据源进行再建模,以提高预报的准确性。其中,由于实际气象条件对空气质量影响很大(例如湿度降低有利于臭氧的生成),且污染物浓度实测数据的变化情况对空气质量预报具有一定参考价值,故目前会参考空气质量监测点获得的气象与污染物数据进行二次建模,以优化预报模型。二次模型与WRF-CMAQ模型关系如图 3所示。为便于理解,下文将WRF-CMAQ模型运行产生的数据简称为“一次预报数据”,将空气质量监测站点实际监测得到的数据简称为“实测数据”。一般来说,一次预报数据与实测数据相关性不高,但预报过程中常会使用实测数据对一次预报数据进行修正以达到更好的效果。

图 3 二次模型优化的WRF-CMAQ空气质量预报过程

为进行二次建模以预测给定监测点未来三天的空气质量情况,题目提供了监测点长期空气质量预报基础数据,包括污染物浓度一次预报数据、气象一次预报数据、气象实测数据和污染物浓度实测数据,其中,所有一次预报数据的时间跨度为2020-7-23 ~ 2021-7-13,
所有实测数据的时间跨度为2019-4-16 ~ 2021-7-13,
数据总量在十万量级(详见附件1~3)。需要注意的是:(1)每日预报的时间固定为早晨7点,此时可以获得当日7时及之前时刻的实测数据,以及运行日期在当日及之前日期的一次预报数据(预报时间范围截至第三日23时)。监测时间在当日7时以后的逐小时实测数据和运行日期在次日及以后的一次预报数据都是无法获得的,例如:在2021年7月13日晨间对7月13日至7月15日的空气质量进行预报过程中,可供参考的实测数据时间范围为(2019-04-16 00:00, 2021-07-13 07:00),模型运行日期范围为(2020-07-23, 2021-07-13)。(2)受监测数据权限及相应监测设备功能等的限制,部分气象指标的实测数据无法获得。(3)由于一次预报对邻近日期的准确度较高,故理论上二次预报对邻近日期的准确度也较高。

根据《环境空气质量标准》(GB3095-2012),用于衡量空气质量的常规大气污染物共有六种,分别为二氧化硫(SO2)、二氧化氮(NO2)、粒径小于10μm的颗粒物(PM10)、粒径小于2.5μm的颗粒物(PM2.5)、臭氧(O3)、一氧化碳(CO)。其中,臭氧污染在全国多地区频发,对臭氧污染的预警与防治是环保部门的工作重点。臭氧浓度预报也是六项污染物预报中较难的一项,其原因在于:作为六项污染物中唯一的二次污染物,臭氧并非来自污染源的直接排放,而是在大气中经过一系列化学及光化学反应生成的(可参考附录 一种近地面臭氧污染形成机制 部分),这导致用WRF-CMAQ模型精确预测臭氧浓度变化的难度很高;同时,国内外已有的研究工作尚未得出臭氧生成机理的一般结论[4]。因此,如何利用现有的实测数据和一次预报数据建立二次模型以提高臭氧预报的准确度是本次建模的重难点之一。

请你们团队根据问题要求,基于一次预报数据及实测数据(见附件)进行空气质量预报二次数学建模,完成以下四个问题。请注意,实际工作中会遇到数据为空值或异常值的情况(见附录),故要求建立的模型具有一定的鲁棒性。

问题1. 使用附件1中的数据,按照附录中的方法计算监测点A从2020年8月25日到8月28日每天实测的AQI和首要污染物,将结果按照附录“AQI计算结果表”的格式放在正文中。

问题2. 在污染物排放情况不变的条件下,某一地区的气象条件有利于污染物扩散或沉降时,该地区的AQI会下降,反之会上升。使用附件1中的数据,根据对污染物浓度的影响程度,对气象条件进行合理分类,并阐述各类气象条件的特征。

问题3. 使用附件1、2中的数据,建立一个同时适用于A、B、C三个监测点(监测点两两间直线距离>100km,忽略相互影响)的二次预报数学模型,用来预测未来三天6种常规污染物单日浓度值,要求二次预报模型预测结果中AQI预报值的最大相对误差应尽量小,且首要污染物预测准确度尽量高。并使用该模型预测监测点A、B、C在2021年7月13日至7月15日6种常规污染物的单日浓度值,计算相应的AQI和首要污染物,将结果依照附录“污染物浓度及AQI预测结果表”的格式放在论文中。

问题4. 相邻区域的污染物浓度往往具有一定的相关性,区域协同预报可能会提升空气质量预报的准确度。如图 4,监测点A的临近区域内存在监测点A1、A2、A3,使用附件1、3中的数据,建立包含A、A1、A2、A3四个监测点的协同预报模型,要求二次模型预测结果中AQI预报值的最大相对误差应尽量小,且首要污染物预测准确度尽量高。使用该模型预测监测点A、A1、A2、A3在2021年7月13日至7月15日6种常规污染物的单日浓度值,计算相应的AQI和首要污染物,将结果依照附录“污染物浓度及AQI预测结果表”的格式放在论文中。并讨论:与问题3的模型相比,协同预报模型能否提升针对监测点A的污染物浓度预报准确度?说明原因

链接:https://pan.baidu.com/s/10uixCmmHsXDglVLw3JN0IQ 
提取码:n4xr

你可能感兴趣的:(数学建模国赛/美赛/研赛,数学建模,华为,机器学习,人工智能)