协程介绍, Greenlet模块,Gevent模块,Genvent之同步与异步

昨日内容回顾                                                                   

I/O模型,面试会问到
I/O操作,不占用CPU。它内部有一个专门的处理I/O模块。
print和写log 属于I/O操作,它不占用CPU

线程
GIL保证一个进程中的多个线程在同一时刻只有一个可以被CPU执行

后续的项目,特别是处理网络请求,非常多。

 

实例化一个Lock(),它就是一个互斥锁

LCOK 和RLOCK
互斥锁LCOK
死锁
rlock 递归锁
递归锁不会发生死锁现象

 

2个进程中的线程,不会受到GIL影响。
GIL是针对一个进程中的多个线程,同一时间,只能有一个线程访问CPU
针对GIL的CPU利用率问题
起多个进程,就可以解决CPU利用率问题。

 

昨天的科学家吃面的例子,它不能用一把锁,必须2个锁。

?
1
2
3
4
5
6
7
8
9
10
def eat1(noodle_lock,fork_lock,name):
     noodle_lock.acquire()
     print ( '%s抢到了面' % name)
     fork_lock.acquire()
     print ( '%s抢到了叉子' % name)
     print ( '%s正在吃面' % name)
     fork_lock.release()
     print ( '%s归还了叉子' % name)
     noodle_lock.release()
     print ( '%s归还了面' % name)

  

看下图

假设有三个人,

A要面和叉子

B只要面

C只要叉子

如果只有一个锁,那么就无法处理这3个人的需求,会发生数据不安全的情况。

 

semaphore 在一开始固定一个线程的流量
condition 通过一个信号控制线程的流量
event 通过一个信号控制所有线程
timer 定时器
队列 线程数据安全

线程池
能够在多线程的基础上进一步节省内存和时间开销

 

 一、引子                                                                         

之前我们学习了线程、进程的概念,了解了在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位。按道理来说我们已经算是把cpu的利用率提高很多了。但是我们知道无论是创建多进程还是创建多线程来解决问题,都要消耗一定的时间来创建进程、创建线程、以及管理他们之间的切换。

  随着我们对于效率的追求不断提高,基于单线程来实现并发又成为一个新的课题,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发。这样就可以节省创建线进程所消耗的时间。

  为此我们需要先回顾下并发的本质:切换+保存状态

   cpu正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,另外一种情况是该任务计算的时间过长

    

  ps:在介绍进程理论时,提及进程的三种执行状态,而线程才是执行单位,所以也可以将上图理解为线程的三种状态 

   一:其中第二种情况并不能提升效率,只是为了让cpu能够雨露均沾,实现看起来所有任务都被“同时”执行的效果,如果多个任务都是纯计算的,这种切换反而会降低效率。

  为此我们可以基于yield来验证。yield本身就是一种在单线程下可以保存任务运行状态的方法,我们来简单复习一下:

#1 yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级
#2 send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换
#串行执行
import time
def consumer(res):
    '''任务1:接收数据,处理数据'''
    pass

def producer():
    '''任务2:生产数据'''
    res=[]
    for i in range(10000000):
        res.append(i)
    return res

start=time.time()
#串行执行
res=producer()
consumer(res) #写成consumer(producer())会降低执行效率
stop=time.time()
print(stop-start) #1.5536692142486572



#基于yield并发执行
import time
def consumer():
    '''任务1:接收数据,处理数据'''
    while True:
        x=yield

def producer():
    '''任务2:生产数据'''
    g=consumer()
    next(g)
    for i in range(10000000):
        g.send(i)

start=time.time()
#基于yield保存状态,实现两个任务直接来回切换,即并发的效果
#PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
producer()

stop=time.time()
print(stop-start) #2.0272178649902344
单纯地切换反而会降低运行效率

二:第一种情况的切换。在任务一遇到io情况下,切到任务二去执行,这样就可以利用任务一阻塞的时间完成任务二的计算,效率的提升就在于此。

import time
def consumer():
    '''任务1:接收数据,处理数据'''
    while True:
        x=yield

def producer():
    '''任务2:生产数据'''
    g=consumer()
    next(g)
    for i in range(10000000):
        g.send(i)
        time.sleep(2)

start=time.time()
producer() #并发执行,但是任务producer遇到io就会阻塞住,并不会切到该线程内的其他任务去执行

stop=time.time()
print(stop-start)
yield无法做到遇到io阻塞

对于单线程下,我们不可避免程序中出现io操作,但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另外一个任务去计算,这样就保证了该线程能够最大限度地处于就绪态,即随时都可以被cpu执行的状态,相当于我们在用户程序级别将自己的io操作最大限度地隐藏起来,从而可以迷惑操作系统,让其看到:该线程好像是一直在计算,io比较少,从而更多的将cpu的执行权限分配给我们的线程。

    协程的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率。为了实现它,我们需要找寻一种可以同时满足以下条件的解决方案:

#1. 可以控制多个任务之间的切换,切换之前将任务的状态保存下来,以便重新运行时,可以基于暂停的位置继续执行。
#2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换

 

红色表示忙(IO),绿色表示正常运行

左边是正常的线程,右边是协程

在执行程序的过程中,遇到IO操作就切换其他线程执行,比如b。

网络的recv,访问网页,都存在IO

协程
协程并不是实际存在的实体
它的本质 就是一个线程的多个部分

比线程的单位更小 —— 协程、纤程
它的本质就是一个线程的多个部分
在一个线程中可以开启很多协程
在执行程序的过程中,遇到IO操作就冻结当前位置的状态
去执行其他任务,在执行其他任务过程中,
会不断的检测上一个冻结的任务是否IO结束
如果IO结束了,就继续从冻结的位置开始执行

一个线程不会遇到阻塞 —— 一直在使用CPU
多个线程 —— 只能有一个线程使用CPU
协程比线程之间的切换和线程的创建销毁
所花费的时间、空间开销要小的多

 

协程的特点
冻结当前程序/任务的执行状态 —— 技能解锁
可以规避IO操作的时间

它的特点,是线程没有的。

 

冻结函数状态-->生成器

?
1
2
3
4
5
6
7
8
9
10
def func():
     print ( 1 )
     yield 'aaa'
     print ( 2 )
     yield 'bbb'
     print ( 3 )
     yield 'ccc'
 
g = func()
next (g)

执行输出:1

 

?
1
2
3
4
5
6
7
8
def func():
     x = yield 1
     print (x)
     yield 2
 
g = func()
print ( next (g))
print (g.send( 'aaa' ))

执行输出:

1

aaa

2

 

上面代码的运行过程如下。
1.当调用next(g)方法时,python首先会执行func方法的yield 1语句。由于是一个yield语句,因此方法的执行过程被挂起,而next方法返回值为yield关键字后面表达式的值,即为1。

2.当调用g.send('aaa')方法时,python首先恢复func方法的运行环境。同时,将表达式yield 1的返回值定义为send方法参数的值,即为aaa
这样,接下来x = yield 1 这一赋值语句会将x的值置为aaa。继续运行会遇到yield 2语句。
因此,func方法再次被挂起。同时,send方法的返回值为yield关键字后面表达式的值,为2。
最终输出:
1
aaa
2

 

单纯的切换状态,会不会影响程序执行时间?

看上面的例子:单纯地切换反而会降低运行效率

结论:

单纯的切换 还是要耗费一些时间的 记住当前执行的状态

上面的列表虽然执行快,但是它占用了大量内存。它是用时间换了空间

 

二、协程介绍                                                                   

协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。、

需要强调的是:

#1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
#2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)

对比操作系统控制线程的切换,用户在单线程内控制协程的切换

优点如下:

#1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
#2. 单线程内就可以实现并发的效果,最大限度地利用cpu

缺点如下:

#1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
#2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

总结协程特点:

  1. 必须在只有一个单线程里实现并发
  2. 修改共享数据不需加锁
  3. 用户程序里自己保存多个控制流的上下文栈
  4. 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))

 

三、Greenlet模块                                                            

简介:

Greenlet是python的一个C扩展,来源于Stackless python,旨在提供可自行调度的‘微线程’, 即协程。generator实现的协程在yield value时只能将value返回给调用者(caller)。 而在greenlet中,target.switch(value)可以切换到指定的协程(target), 然后yield value。greenlet用switch来表示协程的切换,从一个协程切换到另一个协程需要显式指定。

 

安装 :pip3 install greenlet

from greenlet import greenlet

def eat(name):
    print('%s eat 1' %name)
    g2.switch('egon')
    print('%s eat 2' %name)
    g2.switch()
def play(name):
    print('%s play 1' %name)
    g1.switch()
    print('%s play 2' %name)

g1=greenlet(eat)
g2=greenlet(play)

g1.switch('egon')#可以在第一次switch时传入参数,以后都不需要
greenlet实现状态切换

单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度

#顺序执行
import time
def f1():
    res=1
    for i in range(100000000):
        res+=i

def f2():
    res=1
    for i in range(100000000):
        res*=i

start=time.time()
f1()
f2()
stop=time.time()
print('run time is %s' %(stop-start)) #10.985628366470337

#切换
from greenlet import greenlet
import time
def f1():
    res=1
    for i in range(100000000):
        res+=i
        g2.switch()

def f2():
    res=1
    for i in range(100000000):
        res*=i
        g1.switch()

start=time.time()
g1=greenlet(f1)
g2=greenlet(f2)
g1.switch()
stop=time.time()
print('run time is %s' %(stop-start)) # 52.763017892837524
效率对比

greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。

单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2。。。。如此,才能提高效率,这就用到了Gevent模块。

 

greenlet不是创造协程的模块
它是用来做多个协程任务切换的
它到底是怎么实现切换的呢?

?
1
2
3
4
5
6
7
8
9
10
11
from greenlet import greenlet
 
def func():
     print ( 123 )
 
def func2():
     print ( 456 )
 
g1 = greenlet(func)  # 实例化
g2 = greenlet(func2)
g1.switch()  # 开始运行,它会运行到下一个switch结束。否则一直运行

执行输出:123

 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
from greenlet import greenlet
def test1():
     print 12
     gr2.switch()
     print 34
 
def test2():
     print 56
     gr1.switch()
     print 78
 
gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()

  

执行输出:

12
56
34

执行过程:

当创建一个greenlet时,首先初始化一个空的栈, switch到这个栈的时候,会运行在greenlet构造时传入的函数(首先在test1中打印 12), 如果在这个函数(test1)中switch到其他协程(到了test2 打印34),那么该协程会被挂起,等到切换回来(在test2中切换回来 打印34)。当这个协程对应函数执行完毕,那么这个协程就变成dead状态。
  注意 上面没有打印test2的最后一行输出 78,因为在test2中切换到gr1之后挂起,但是没有地方再切换回来。这个可能造成泄漏,后面细说。

 

上面的例子,有几个缺点
1.手动切换
2.不能规避I/O操作(睡眠)

 

四、Gevent模块                                                              

安装:pip3 install gevent

Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的

g2=gevent.spawn(func2)

g1.join() #等待g1结束

g2.join() #等待g2结束

#或者上述两步合作一步:gevent.joinall([g1,g2])

g1.value#拿到func1的返回值
用法介绍
from gevent import monkey;monkey.patch_all()

import gevent
import time
def eat():
    print('eat food 1')
    time.sleep(2)
    print('eat food 2')

def play():
    print('play 1')
    time.sleep(1)
    print('play 2')

g1=gevent.spawn(eat)
g2=gevent.spawn(play)
gevent.joinall([g1,g2])
print('')
例:遇到io主动切换

我们可以用threading.current_thread().getName()来查看每个g1和g2,查看的结果为DummyThread-n,即假线程

from gevent import monkey;monkey.patch_all()
import threading
import gevent
import time
def eat():
    print(threading.current_thread().getName())
    print('eat food 1')
    time.sleep(2)
    print('eat food 2')

def play():
    print(threading.current_thread().getName())
    print('play 1')
    time.sleep(1)
    print('play 2')

g1=gevent.spawn(eat)
g2=gevent.spawn(play)
gevent.joinall([g1,g2])
print('')
查看threading.current_thread().getName()

 

真正能实现协程的模块gevent

?
1
2
3
4
5
import gevent
def eat():
     print ( 'eating1' )
     print ( 'eating2' )
g1 = gevent.spawn(eat)  #创建一个协程对象g1

执行输出为空,表示它还没执行。

?
1
2
3
4
5
6
import gevent
def eat():
     print ( 'eating1' )
     print ( 'eating2' )
g1 = gevent.spawn(eat)  #创建一个协程对象g1
g1.join()  #等待g1结束

执行输出:

eating1
eating2

 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import time
import gevent
def eat():
     print ( 'eating1' )
     time.sleep( 1 )
     print ( 'eating2' )
 
def play():
     print ( 'playing1' )
     time.sleep( 1 )
     print ( 'playing2' )
 
g1 = gevent.spawn(eat)  #创建一个协程对象g1
g2 = gevent.spawn(play)
g1.join()  #等待g1结束
g2.join()

执行输出:

eating1
eating2
playing1
playing2

 

如果想顺序执行呢?需要用到gevent.sleep

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import time
import gevent
def eat():
     print ( 'eating1' )
     gevent.sleep( 1 #延时调用
     print ( 'eating2' )
 
def play():
     print ( 'playing1' )
     gevent.sleep( 1 #延时调用
     print ( 'playing2' )
 
g1 = gevent.spawn(eat)  #创建一个协程对象g1
g2 = gevent.spawn(play)
g1.join()  #等待g1结束
g2.join()

执行输出:

eating1
playing1
eating2
playing2

 

如果想让协程执行time.sleep()呢?由于默认,协程无法识别time.sleep()方法,需要导入一个模块monkey

monkey patch (猴子补丁)
用来在运行时动态修改已有的代码,而不需要修改原始代码。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from gevent import monkey;monkey.patch_all()
# 它会把下面导入的所有的模块中的IO操作都打成一个包,gevent就能够认识这些IO了
import time
import gevent
def eat():
     print ( 'eating1' )
     time.sleep( 1 #延时调用
     print ( 'eating2' )
 
def play():
     print ( 'playing1' )
     time.sleep( 1 #延时调用
     print ( 'playing2' )
 
g1 = gevent.spawn(eat)  #创建一个协程对象g1
g2 = gevent.spawn(play)
g1.join()  #等待g1结束
g2.join()

执行输出:

eating1
playing1
eating2
playing2

 

结论:

使用gevent模块来执行多个函数,表示在这些函数遇到IO操作的时候可以在同一个线程中进行切换
利用其他任务的IO阻塞时间来切换到其他的任务继续执行

前提是:

spawn来发布协程任务
join负责开启并等待任务执行结束
gevent本身不认识其他模块中的IO操作,但是如果我们在导入其他模块之前执行from gevent import monkey;monkey.patch_all()  这行代码,必须在文件最开头
gevent就能够认识在这句话之后导入的模块中的所有IO操作了

 

五、Gevent之同步与异步                                                

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from gevent import spawn,joinall,monkey;monkey.patch_all()
 
import time
def task(pid):
     """
     Some non-deterministic task
     """
     time.sleep( 0.5 )
     print ( 'Task %s done' % pid)
 
 
def synchronous():  # 同步
     for i in range ( 10 ):
         task(i)
 
def asynchronous(): # 异步
     g_l = [spawn(task,i) for i in range ( 10 )]
     joinall(g_l)
     print ( 'DONE' )
     
if __name__ = = '__main__' :
     print ( 'Synchronous:' )
     synchronous()
     print ( 'Asynchronous:' )
     asynchronous()
#  上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。
#  初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,
#  后者阻塞当前流程,并执行所有给定的greenlet任务。执行流程只会在 所有greenlet执行完后才会继续向下走。

当一个任务执行时,依赖另外一个任务的结果时,这种情况不适合异步,只能用同步

 

Gevent之应用举例一                                                                                                                      

手动安装模块requests

pip3 install requests

from gevent import monkey;monkey.patch_all()
import gevent
import requests
import time

def get_page(url):
    print('GET: %s' %url)
    response=requests.get(url)
    if response.status_code == 200:
        print('%d bytes received from %s' %(len(response.text),url))


start_time=time.time()
gevent.joinall([
    gevent.spawn(get_page,'https://www.python.org/'),
    gevent.spawn(get_page,'https://www.yahoo.com/'),
    gevent.spawn(get_page,'https://github.com/'),
])
stop_time=time.time()
print('run time is %s' %(stop_time-start_time))
协程应用:爬虫

等待网页请求结果是,去执行其他任务

红色表示等待,绿色表示执行任务

 另外一个爬虫例子:

对比使用普通函数和使用协程,谁更快一点

由于操作系统,访问一次网页后,会有缓存。

所以测试时,先访问一遍网页。再分别测试协程和普通函数。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from gevent import monkey;monkey.patch_all()
from urllib.request import urlopen
import gevent
import time
 
def get_page(url):
     res = urlopen(url)
     #print(len(res.read()))
 
url_lst = [
     'http://www.baidu.com' ,
     'http://www.sogou.com' ,
     'http://www.sohu.com' ,
     'http://www.qq.com' ,
     'http://www.cnblogs.com' ,
]
start = time.time()
gevent.joinall([gevent.spawn(get_page,url) for url in url_lst])
print ( '先执行一次' ,time.time() - start)
 
start = time.time()
gevent.joinall([gevent.spawn(get_page,url) for url in url_lst])
print ( '协程' ,time.time() - start)
 
start = time.time()
for url in url_lst:get_page(url)
print ( '普通' ,time.time() - start)

执行输出:

先执行一次 0.6465449333190918
协程 0.34525322914123535
普通 0.570899486541748

 结论
以后用爬虫,可以使用协程,它的速度更快。

 

Gevent之应用举例二                                                                                                                      

通过gevent实现单线程下的socket并发

注意 :from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞

from gevent import monkey;monkey.patch_all()
from socket import *
import gevent

#如果不想用money.patch_all()打补丁,可以用gevent自带的socket
# from gevent import socket
# s=socket.socket()

def server(server_ip,port):
    s=socket(AF_INET,SOCK_STREAM)
    s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
    s.bind((server_ip,port))
    s.listen(5)
    while True:
        conn,addr=s.accept()
        gevent.spawn(talk,conn,addr)

def talk(conn,addr):
    try:
        while True:
            res=conn.recv(1024)
            print('client %s:%s msg: %s' %(addr[0],addr[1],res))
            conn.send(res.upper())
    except Exception as e:
        print(e)
    finally:
        conn.close()

if __name__ == '__main__':
    server('127.0.0.1',8080)
server
from socket import *

client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080))


while True:
    msg=input('>>: ').strip()
    if not msg:continue

    client.send(msg.encode('utf-8'))
    msg=client.recv(1024)
    print(msg.decode('utf-8'))
client
from threading import Thread
from socket import *
import threading

def client(server_ip,port):
    c=socket(AF_INET,SOCK_STREAM) #套接字对象一定要加到函数内,即局部名称空间内,放在函数外则被所有线程共享,则大家公用一个套接字对象,那么客户端端口永远一样了
    c.connect((server_ip,port))

    count=0
    while True:
        c.send(('%s say hello %s' %(threading.current_thread().getName(),count)).encode('utf-8'))
        msg=c.recv(1024)
        print(msg.decode('utf-8'))
        count+=1
if __name__ == '__main__':
    for i in range(500):
        t=Thread(target=client,args=('127.0.0.1',8080))
        t.start()
多线程并发多个客户端

 

进程5个,线程20个,协程500个 —— 通用的组合  —— 50000qps

0.3s以内,用户是感觉不到的

只有进程能处理并行

重点掌握进程,线程,协程

这3者之间的区别,优缺点,理论知识。面试会问道。

task,翻译是任务

?
1
2
3
4
1 多进程 / 多线程网络编程都是一个进程或者线程处理一个task,当task过多时,就会导致巨量的进程 / 线程。
2 巨量的进程 / 线程会导致 上下文切换极其频繁!  大家知道:上下文切换是要消耗cpu资源的 所以当进程 / 线程数量过多时,cpu资源就得不到有效利用
3 而协程实际上就是:在用户空间实现task的上下文切换! 这种上下文切换消耗的代价相较而言微乎其微。这就是协程的优势!
4 当然协程也有劣势:就是无法利用多核cpu,但是我们有解决办法:多进程 + 协程

 

看下图

 playing2没有输出,是因为阻塞结束,不再切换。

 

明天默写:

socket_server

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from gevent import monkey;monkey.patch_all()
import socket
import gevent
def async_talk(conn):
     try :
         while True :
             conn.send(b 'hello' )
             ret = conn.recv( 1024 )
             print (ret)
     finally :
         conn.close()
sk = socket.socket()
sk.bind(( '127.0.0.1' , 9000 ))
sk.listen()
while True :
     conn,addr = sk.accept()
     gevent.spawn(async_talk,conn)
sk.close()

socket_client

?
1
2
3
4
5
6
7
8
9
10
11
import socket
from threading import Thread
def socket_client():
     sk = socket.socket()
     sk.connect(( '127.0.0.1' , 9000 ))
     while True :
         print (sk.recv( 1024 ))
         sk.send(b 'bye' )
     sk.close()
for i in range ( 500 ):
     Thread(target = socket_client).start()

  

转载于:https://www.cnblogs.com/erhao9767/p/10816351.html

你可能感兴趣的:(python,操作系统,爬虫)