Python光学仿真光的偏振编程理解学习

光的偏振

由于光波是横波,所以对于任意一个光波,其振幅方向与传播方向在一个固定的平面内。换言之,一束光波可以存在振幅方向不同的一群光波,对于其中一个光波而言,其振幅方向即为偏振方向。

可以画出其示意图

#偏振光演示
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D as axd
def polarShow():
    z = np.arange(0,5,0.01)      #传播方向,单位um
    dWave = 0.6328   
    x1 = z*0
    y1 = np.cos(2*np.pi*z/dWave)#此光波偏振方向为y
    x2 = np.cos(2*np.pi*z/dWave)#此光波偏振方向为y
    y2 = z*0
    fig = plt.figure()
    ax = axd(fig)
    ax.plot3D(z,x1,y1)
    ax.plot3D(z,x2,y2)
    ax.plot3D(z,x1,y2)
    plt.show()

得到其示意图为

Python光学仿真光的偏振编程理解学习_第1张图片

我们生活中遇到的大部分光都是各种偏振方向的均匀混合,即并不是偏振光。上图所示的蓝色和橙色光波,其偏振方向单一,这种光叫做线偏振光。又因为这两束光处处保持等相位,则这两束光的合成仍旧为偏振光。

如果二者之间产生一点相位差,那么其合成将不再是线偏振光,下面将程序中插入一个相位

#两个存在相位差的线偏振光演示
def polarShow(dWave = 0.6328,delta=0.5):
    z = np.arange(0,5,0.01)      
    x1 = z*0
    y1 = np.cos(2*np.pi*z/dWave+delta)#此光波偏振方向为y
    x2 = np.cos(2*np.pi*z/dWave)#此光波偏振方向为x
    y2 = z*0
    x3 = x1+x2
    y3 = y1+y2
    fig = plt.figure()
    ax = axd(fig)
    ax.plot3D(z,x1,y1)
    ax.plot3D(z,x2,y2)
    ax.plot3D(z,x3,y3)
    ax.plot3D(z,x1,y2)
    plt.show()

调整视角之后,如下图所示,可见两束现偏振光合成之后,偏振方向则在光的不同传播位置处发生变化。由于沿着光的传播方向看去,其投影为一个椭圆,所以称此时的光为椭圆偏振光。

Python光学仿真光的偏振编程理解学习_第2张图片

调整相位差,然后画出光波沿传播方向上的投影

#偏振光演示
def polarShow(dWave = 0.6328):
    z = np.arange(0,5,0.01)      
    x = np.cos(2*np.pi*z/dWave) #x偏振光
    delta = [0,np.pi/6,np.pi/4,\
             np.pi/3,np.pi/2,2*np.pi/3,\
             3*np.pi/4,5*np.pi/6,np.pi]    
    titles = ["0","30°","45°","60°","90°",\
        "120°","135°","150°","180°"]
    #fig = plt.figure()
    for i in range(9):
        ax =plt.subplot(331+i)  #子图绘制,表示3×3的布局中的第(1+i)个图
        ax.set_title(titles[i])
        y = np.cos(2*np.pi*z/dWave+delta[i])#此光波偏振方向为y
        plt.plot(x,y)
        plt.xticks([])
        plt.yticks([])  #去掉坐标轴
    plt.subplots_adjust(wspace=0.5,hspace=0.5)#调整子图间距
    plt.show()

于是就得到了这张著名的图片:

Python光学仿真光的偏振编程理解学习_第3张图片

光在空气中或者水中传播时,并不会改变其偏振状态,同时这两种介质对不同偏振方向的光具有相同的折射率。

以上就是Python光学仿真光的偏振编程理解学习的详细内容,更多关于Python光的偏振的资料请关注脚本之家其它相关文章!

你可能感兴趣的:(Python光学仿真光的偏振编程理解学习)