【MySQL高级】笔记-01

文章目录

  • MySQL高级-笔记-01
    • 一.MySQL的体系结构
      • 1-1 Mysql的体系结构概览
      • 1-2 连接层
      • 1-3 服务层
      • 1-4 引擎层
      • 1-5 存储层
    • 二.存储引擎
      • 2-1 存储引擎概述
      • 2-2 MylSAM与InnoDB
        • (1)InnoDB
        • (2)MylSAM
      • 2-3 存储引擎的选择
    • 三.索引
      • 3-1 什么是索引
      • 3-2 索引优势劣势
      • 3-3 索引结构
        • (1)BTREE 结构
        • (2)B+TREE 结构
        • (3)MySQL中的B+Tree
      • 3-4 索引分类
      • 3-5 索引语法
        • (1)创建索引
        • (2)查看索引
        • (3)删除索引
        • (4)ALTER命令
      • 3-6 索引设计原则
    • 四.优化SQL步骤
      • 4-1 查看SQL执行频率
      • 4-2 定位低效率执行SQL
      • 4-3 explain分析执行计划
        • (1)环境准备
        • (2)explain 之 id
        • (4)explain 之 select_type
        • (5)explain 之 table
        • (6)explain 之 type
        • (7)explain 之 key
        • (8)explain 之 rows
        • (9)explain 之 extra
    • 五.SQL优化
      • 5-1 索引优化
      • 5-2 优化insert语句
      • 5-3 优化order by语句
      • 5-4 优化group by 语句
      • 5-5 优化嵌套查询
      • 5-6 优化OR条件
      • 5-7 优化分页查询
      • 5-8 使用SQL提示
      • 5-9 大批量插入数据

MySQL高级-笔记-01

本文章看的视频:黑马MySQL高级

一.MySQL的体系结构

1-1 Mysql的体系结构概览

【MySQL高级】笔记-01_第1张图片

整个MySQL Server由以下组成:

  • Connection Pool : 连接池组件
  • Management Services & Utilities : 管理服务和工具组件
  • SQL Interface : SQL接口组件
  • Parser : 查询分析器组件
  • Optimizer : 优化器组件
  • Caches & Buffers : 缓冲池组件
  • Pluggable Storage Engines : 存储引擎
  • File System : 文件系统

和其他数据库相比,MySQL有点与众不同,它的架构可以在多种不同场景中应用并发挥良好作用。主要体现在存储引擎上,插件式的存储引擎架构,将查询处理和其他的系统任务以及数据的存储提取分离。这种架构可以根据业务的需求和实际需要选择合适的存储引擎。

1-2 连接层

最上层是一些客户端和链接服务,包含本地sock 通信和大多数基于客户端/服务端工具实现的类似于 TCP/IP的通信。主要完成一些类似于连接处理、授权认证、及相关的安全方案。在该层上引入了线程池的概念,为通过认证安全接入的客户端提供线程。同样在该层上可以实现基于SSL的安全链接。服务器也会为安全接入的每个客户端验证它所具有的操作权限。

1-3 服务层

第二层架构主要完成大多数的核心服务功能,如SQL接口,并完成缓存的查询,SQL的分析和优化,部分内置函数的执行。所有跨存储引擎的功能也在这一层实现,如 过程、函数等。在该层,服务器会解析查询并创建相应的内部解析树,并对其完成相应的优化如确定表的查询的顺序,是否利用索引等, 最后生成相应的执行操作。如果是select语句,服务器还会查询内部的缓存,如果缓存空间足够大,这样在解决大量读操作的环境中能够很好的提升系统的性能。

1-4 引擎层

存储引擎层,存储引擎真正的负责了MySQL中数据的存储和提取,服务器通过API和存储引擎进行通信。不同的存储引擎具有不同的功能,这样我们可以根据自己的需要,来选取合适的存储引擎。

1-5 存储层

数据存储层,主要是将数据存储在文件系统之上,并完成与存储引擎的交互。

二.存储引擎

2-1 存储引擎概述

存储引擎就是存储数据,建立索引,更新查询数据等等技术的实现方式 。存储引擎是基于表的,而不是基于库的。所以存储引擎也可被称为表类型

MySQL5.0支持的存储引擎包含 : InnoDB 、MyISAM 、BDB、MEMORY、MERGE、EXAMPLE、NDB Cluster、ARCHIVE、CSV、BLACKHOLE、FEDERATED等,其中InnoDB和BDB提供事务安全表,其他存储引擎是非事务安全表。

查询当前数据库支持的存储引擎 ,指令:

show engines;

【MySQL高级】笔记-01_第2张图片

创建新表时如果不指定存储引擎,那么系统就会使用默认的存储引擎,MySQL5.5之前的默认存储引擎是MyISAM,5.5之后就改为了InnoDB。

查看Mysql数据库默认的存储引擎 , 指令 :

 show variables like '%storage_engine%' ;

【MySQL高级】笔记-01_第3张图片

2-2 MylSAM与InnoDB

(1)InnoDB

InnoDB存储引擎是Mysql的默认存储引擎。InnoDB存储引擎提供了具有提交、回滚、崩溃恢复能力的事务安全。但是对比MyISAM的存储引擎,InnoDB写的处理效率差一些,并且会占用更多的磁盘空间以保留数据和索引

InnoDB存储引擎不同于其他存储引擎的特点 :

  • 事务控制:InnoDB 支持事务

  • 外键约束:MySQL支持外键的存储引擎只有InnoDB , 在创建外键的时候, 要求父表必须有对应的索引 , 子表在创建外键的时候, 也会自动的创建对应的索引

(2)MylSAM

MyISAM不支持事务、也不支持外键,其优势是访问的速度快,对事务的完整性没有要求或者以SELECT、INSERT为主的应用基本上都可以使用这个引擎来创建表 。

两者对比

对比项 MylSAM InnoDB
主外键 不支持 支持
事务 不支持 支持
行表锁 表锁(不适合高并发) 行锁(适合高并发操作)
缓存 只缓存索引,不缓存真实数据 不仅缓存索引,还缓存真实数据。对内存要求较高
表空间
关注点 性能 事务
默认安装

2-3 存储引擎的选择

在选择存储引擎时,应该根据应用系统的特点选择合适的存储引擎。对于复杂的应用系统,还可以根据实际情况选择多种存储引擎进行组合。以下是几种常用的存储引擎的使用环境。

  • InnoDB : 是Mysql的默认存储引擎,用于事务处理应用程序,支持外键。如果应用对事务的完整性有比较高的要求,在并发条件下要求数据的一致性,数据操作除了插入和查询意外,还包含很多的更新、删除操作,那么InnoDB存储引擎是比较合适的选择。InnoDB存储引擎除了有效的降低由于删除和更新导致的锁定, 还可以确保事务的完整提交和回滚,对于类似于计费系统或者财务系统等对数据准确性要求比较高的系统,InnoDB是最合适的选择。
  • MyISAM : 如果应用是以读操作和插入操作为主,只有很少的更新和删除操作,并且对事务的完整性、并发性要求不是很高,那么选择这个存储引擎是非常合适的。

三.索引

3-1 什么是索引

  • MySQL官方对索引的定义为:索引(index)是帮助MySQL高效获取数据的数据结构(有序)。
  • 在数据之外,数据库系统还维护者满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。如下面的示意图所示 :

【MySQL高级】笔记-01_第4张图片

  • 左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址(注意逻辑上相邻的记录在磁盘上也并不是一定物理相邻的)。为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找快速获取到相应数据。
  • 一般来说索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储在磁盘上。索引是数据库中用来提高性能的最常用的工具。

3-2 索引优势劣势

优势

  • 提高数据检索的效率,降低数据库的IO成本
  • 通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗

劣势

  • 实际上索引也是一张表,该表中保存了主键与索引字段,并指向实体类的记录,所以索引列也是要占用空间的
  • 虽然索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行INSERT、UPDATE、DELETE。因为更新表时,MySQL 不仅要保存数据,还要保存一下索引文件每次更新添加了索引列的字段,都会调整因为更新所带来的键值变化后的索引信息。

3-3 索引结构

索引是在MySQL的存储引擎层中实现的,而不是在服务器层实现的。所以每种存储引擎的索引都不一定完全相同,也不是所有的存储引擎都支持所有的索引类型的。MySQL目前提供了以下4种索引:

  • BTREE 索引 : 最常见的索引类型,大部分索引都支持 B 树索引。
  • HASH 索引:只有Memory引擎支持 , 使用场景简单 。
  • R-tree 索引(空间索引):空间索引是MyISAM引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少,不做特别介绍。
  • Full-text (全文索引) :全文索引也是MyISAM的一个特殊索引类型,主要用于全文索引,InnoDB从Mysql5.6版本开始支持全文索引。

InnoDBMyISAMMemory三种存储引擎对各种索引类型的支持:

索引 InnoDB引擎 MyISAM引擎 Memory引擎
BTREE索引 支持 支持 支持
HASH 索引 不支持 不支持 支持
R-tree 索引 不支持 支持 不支持
Full-text 5.6版本之后支持 支持 不支持

我们平常所说的索引,如果没有特别指明,都是指B+树(多路搜索树,并不一定是二叉的)结构组织的索引。其中聚集索引、复合索引、前缀索引、唯一索引默认都是使用 B+tree 索引,统称为 索引

(1)BTREE 结构

BTree又叫多路平衡搜索树,一颗m叉的BTree特性如下:

  • 树中每个节点最多包含m个孩子。
  • 除根节点与叶子节点外,每个节点至少有[ceil(m/2)](ceil-向上取整)个孩子。
  • 若根节点不是叶子节点,则至少有两个孩子。
  • 所有的叶子节点都在同一层。
  • 每个非叶子节点由n个key与n+1个指针组成,其中[ceil(m/2)-1] <= n <= m-1

这里我们以5叉BTree为例,key的数量:公式推导[ceil(m/2)-1] <= n <= m-1。所以 2 <= n <=4 。当n>4时,中间节点分裂到父节点,两边节点分裂。

插入 C N G A H E K Q M F W L T Z D P R X Y S 数据为例。

具体过程:

【MySQL高级】笔记-01_第5张图片

到此,该BTREE树就已经构建完成了, BTREE树和二叉树相比, 查询数据的效率更高, 因为对于相同的数据量来说,BTREE的层级结构比二叉树小,因此搜索速度快。

(2)B+TREE 结构

B+Tree为BTree的变种,B+Tree与BTree的区别为:

  • n叉B+Tree最多含有n个key,而BTree最多含有n-1个key。
  • B+Tree的叶子节点保存所有的key信息依key大小顺序排列
  • 所有的非叶子节点都可以看作是key的索引部分

【MySQL高级】笔记-01_第6张图片

由于B+Tree只有叶子节点保存key信息,查询任何key都要从root走到叶子。所以B+Tree的查询效率更加稳定

(3)MySQL中的B+Tree

MySql索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,即叶子节点间的指针是双向的,就形成了带有顺序指针的B+Tree,提高区间访问的性能

MySQL中的 B+Tree 索引结构示意图: :

【MySQL高级】笔记-01_第7张图片

3-4 索引分类

  • 单值索引 :即一个索引只包含单个列,一个表可以有多个单列索引
  • 唯一索引 :索引列的值必须唯一,但允许有空值
  • 复合索引 :即一个索引包含多个列

3-5 索引语法

索引在创建表的时候,可以同时创建, 也可以随时增加新的索引。

我们这里准备案例来实际操作:

准备数据库表和插入数据:

create database demo_01 default charset=utf8mb4;

use demo_01;

CREATE TABLE `city` (
  `city_id` int(11) NOT NULL AUTO_INCREMENT,
  `city_name` varchar(50) NOT NULL,
  `country_id` int(11) NOT NULL,
  PRIMARY KEY (`city_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

CREATE TABLE `country` (
  `country_id` int(11) NOT NULL AUTO_INCREMENT,
  `country_name` varchar(100) NOT NULL,
  PRIMARY KEY (`country_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;


insert into `city` (`city_id`, `city_name`, `country_id`) values(1,'西安',1);
insert into `city` (`city_id`, `city_name`, `country_id`) values(2,'NewYork',2);
insert into `city` (`city_id`, `city_name`, `country_id`) values(3,'北京',1);
insert into `city` (`city_id`, `city_name`, `country_id`) values(4,'上海',1);

insert into `country` (`country_id`, `country_name`) values(1,'China');
insert into `country` (`country_id`, `country_name`) values(2,'America');
insert into `country` (`country_id`, `country_name`) values(3,'Japan');
insert into `country` (`country_id`, `country_name`) values(4,'UK');

(1)创建索引

语法:

CREATE 	[UNIQUE|FULLTEXT|SPATIAL]  INDEX index_name 
[USING  index_type]
ON tbl_name(index_col_name,...)


index_col_name : column_name[(length)][ASC | DESC]

示例 : 为city表中的city_name字段创建索引

CREATE INDEX idx_city_name ON city(city_name);

(2)查看索引

语法:

show index  from  table_name;

示例:查看city表中的索引信息

SHOW INDEX FROM city;

(3)删除索引

语法:

DROP  INDEX  index_name  ON  tbl_name;

示例 : 想要删除city表上的索引idx_city_name,可以操作如下

DROP INDEX idx_city_name ON city;

(4)ALTER命令

1). alter  table  tb_name  add  primary  key(column_list); 

	#该语句添加一个主键,这意味着索引值必须是唯一的,且不能为NULL
	
2). alter  table  tb_name  add  unique index_name(column_list);
	
	#这条语句创建索引的值必须是唯一的(除了NULL外,NULL可能会出现多次)
	
3). alter  table  tb_name  add  index index_name(column_list);

	#添加普通索引, 索引值可以出现多次。
	
4). alter  table  tb_name  add  fulltext index_name(column_list);
	
	#该语句指定了索引为FULLTEXT, 用于全文索引
	

3-6 索引设计原则

​ 索引的设计可以遵循一些已有的原则,创建索引的时候请尽量考虑符合这些原则,便于提升索引的使用效率,更高效的使用索引。

  • 查询频次较高,且数据量比较大的表建立索引。

  • 索引字段的选择,最佳候选列应当从where子句的条件中提取,如果where子句中的组合比较多,那么应当挑选最常用、过滤效果最好的列的组合。

  • 使用唯一索引,区分度越高,使用索引的效率越高

  • 索引可以有效的提升查询数据的效率,但索引数量不是多多益善,索引越多,维护索引的代价自然也就水涨船高。对于插入、更新、删除等DML操作比较频繁的表来说,索引过多,会引入相当高的维护代价,降低DML操作的效率,增加相应操作的时间消耗。另外索引过多的话,MySQL也会犯选择困难病,虽然最终仍然会找到一个可用的索引,但无疑提高了选择的代价。

  • 使用短索引,索引创建之后也是使用硬盘来存储的,因此提升索引访问的I/O效率也可以提升总体的访问效率。假如构成索引的字段总长度比较短,那么在给定大小的存储块内可以存储更多的索引值,相应的可以有效的提升MySQL访问索引的I/O效率。

  • 利用最左前缀,N个列组合而成的组合索引,那么相当于是创建了N个索引,如果查询时where子句中使用了组成该索引的前几个字段,那么这条查询SQL可以利用组合索引来提升查询效率。

    创建复合索引:
    
    	CREATE INDEX idx_name_email_status ON tb_seller(NAME,email,STATUS);
    
    就相当于
    	对name 创建索引 ;
    	对name , email 创建了索引 ;
    	对name , email, status 创建了索引 ;
    

四.优化SQL步骤

4-1 查看SQL执行频率

MySQL 客户端连接成功后,通过 show [session|global] status 命令可以提供服务器状态信息。show [session|global] status 可以根据需要加上参数“session”或者“global”来显示 session 级(当前连接)的计结果和 global 级(自数据库上次启动至今)的统计结果。如果不写,默认使用参数是“session”。

下面的命令显示了当前 session 中所有统计参数的值:

show status like 'Com_______';

【MySQL高级】笔记-01_第8张图片

show status like 'Innodb_rows_%';

Com_xxx 表示每个 xxx 语句执行的次数,我们通常比较关心的是以下几个统计参数。

含义
Com_select 执行 select 操作的次数,一次查询只累加 1。
Com_insert 执行 INSERT 操作的次数,对于批量插入的 INSERT 操作,只累加一次。
Com_update 执行 UPDATE 操作的次数。
Com_delete 执行 DELETE 操作的次数。
Innodb_rows_read select 查询返回的行数。
Innodb_rows_inserted 执行 INSERT 操作插入的行数。
Innodb_rows_updated 执行 UPDATE 操作更新的行数。
Innodb_rows_deleted 执行 DELETE 操作删除的行数。
Connections 试图连接 MySQL 服务器的次数。
Uptime 服务器工作时间。
Slow_queries 慢查询的次数。

Com_*** : 这些参数对于所有存储引擎的表操作都会进行累计。

Innodb_*** : 这几个参数只是针对InnoDB 存储引擎的,累加的算法也略有不同。

4-2 定位低效率执行SQL

可以通过以下两种方式定位执行效率较低的 SQL 语句。

  • 慢查询日志:通过慢查询日志定位那些执行效率较低的 SQL 语句,用–log-slow-queries[=file_name]选项启动时,mysqld 写一个包含所有执行时间超过 long_query_time 秒的 SQL 语句的日志文件。

  • show processlist : 慢查询日志在查询结束以后才纪录,所以在应用反映执行效率出现问题的时候查询慢查询日志并不能定位问题,可以使用show processlist命令查看当前MySQL在进行的线程,包括线程的状态、是否锁表等,可以实时地查看 SQL 的执行情况,同时对一些锁表操作进行优化。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-p7tsza1b-1634797593158)(C:\Users\30287\AppData\Roaming\Typora\typora-user-images\image-20211021125726300.png)]

    1) id列,用户登录mysql时,系统分配的"connection_id",可以使用函数connection_id()查看
    
    2) user列,显示当前用户。如果不是root,这个命令就只显示用户权限范围的sql语句
    
    3) host列,显示这个语句是从哪个ip的哪个端口上发的,可以用来跟踪出现问题语句的用户
    
    4) db列,显示这个进程目前连接的是哪个数据库
    
    5) command列,显示当前连接的执行的命令,一般取值为休眠(sleep),查询(query),连接(connect)等
    
    6) time列,显示这个状态持续的时间,单位是秒
    
    7) state列,显示使用当前连接的sql语句的状态,很重要的列。state描述的是语句执行中的某一个状态。一个sql语句,以查询为例,可能需要经过copying to tmp table、sorting result、sending data等状态才可以完成
    
    8) info列,显示这个sql语句,是判断问题语句的一个重要依据
    

4-3 explain分析执行计划

查询SQL语句的执行计划 :

explain  select * from tb_item where id = 1;

在这里插入图片描述

各个字段的含义:

字段 含义
id select查询的序列号,是一组数字,表示的是查询中执行select子句或者是操作表的顺序。
select_type 表示 SELECT 的类型,常见的取值有 SIMPLE(简单表,即不使用表连接或者子查询)、PRIMARY(主查询,即外层的查询)、UNION(UNION 中的第二个或者后面的查询语句)、SUBQUERY(子查询中的第一个 SELECT)等
table 输出结果集的表
type 表示表的连接类型,性能由好到差的连接类型为( system —> const -----> eq_ref ------> ref -------> ref_or_null----> index_merge —> index_subquery -----> range -----> index ------> all )
possible_keys 表示查询时,可能使用的索引
key 表示实际使用的索引
key_len 索引字段的长度
rows 扫描行的数量
extra 执行情况的说明和描述

(1)环境准备

【MySQL高级】笔记-01_第9张图片

CREATE TABLE `t_role` (
  `id` varchar(32) NOT NULL,
  `role_name` varchar(255) DEFAULT NULL,
  `role_code` varchar(255) DEFAULT NULL,
  `description` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `unique_role_name` (`role_name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;


CREATE TABLE `t_user` (
  `id` varchar(32) NOT NULL,
  `username` varchar(45) NOT NULL,
  `password` varchar(96) NOT NULL,
  `name` varchar(45) NOT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `unique_user_username` (`username`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;


CREATE TABLE `user_role` (
  `id` int(11) NOT NULL auto_increment ,
  `user_id` varchar(32) DEFAULT NULL,
  `role_id` varchar(32) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `fk_ur_user_id` (`user_id`),
  KEY `fk_ur_role_id` (`role_id`),
  CONSTRAINT `fk_ur_role_id` FOREIGN KEY (`role_id`) REFERENCES `t_role` (`id`) ON DELETE NO ACTION ON UPDATE NO ACTION,
  CONSTRAINT `fk_ur_user_id` FOREIGN KEY (`user_id`) REFERENCES `t_user` (`id`) ON DELETE NO ACTION ON UPDATE NO ACTION
) ENGINE=InnoDB DEFAULT CHARSET=utf8;




insert into `t_user` (`id`, `username`, `password`, `name`) values('1','super','$2a$10$TJ4TmCdK.X4wv/tCqHW14.w70U3CC33CeVncD3SLmyMXMknstqKRe','超级管理员');
insert into `t_user` (`id`, `username`, `password`, `name`) values('2','admin','$2a$10$TJ4TmCdK.X4wv/tCqHW14.w70U3CC33CeVncD3SLmyMXMknstqKRe','系统管理员');
insert into `t_user` (`id`, `username`, `password`, `name`) values('3','itcast','$2a$10$8qmaHgUFUAmPR5pOuWhYWOr291WJYjHelUlYn07k5ELF8ZCrW0Cui','test02');
insert into `t_user` (`id`, `username`, `password`, `name`) values('4','stu1','$2a$10$pLtt2KDAFpwTWLjNsmTEi.oU1yOZyIn9XkziK/y/spH5rftCpUMZa','学生1');
insert into `t_user` (`id`, `username`, `password`, `name`) values('5','stu2','$2a$10$nxPKkYSez7uz2YQYUnwhR.z57km3yqKn3Hr/p1FR6ZKgc18u.Tvqm','学生2');
insert into `t_user` (`id`, `username`, `password`, `name`) values('6','t1','$2a$10$TJ4TmCdK.X4wv/tCqHW14.w70U3CC33CeVncD3SLmyMXMknstqKRe','老师1');



INSERT INTO `t_role` (`id`, `role_name`, `role_code`, `description`) VALUES('5','学生','student','学生');
INSERT INTO `t_role` (`id`, `role_name`, `role_code`, `description`) VALUES('7','老师','teacher','老师');
INSERT INTO `t_role` (`id`, `role_name`, `role_code`, `description`) VALUES('8','教学管理员','teachmanager','教学管理员');
INSERT INTO `t_role` (`id`, `role_name`, `role_code`, `description`) VALUES('9','管理员','admin','管理员');
INSERT INTO `t_role` (`id`, `role_name`, `role_code`, `description`) VALUES('10','超级管理员','super','超级管理员');


INSERT INTO user_role(id,user_id,role_id) VALUES(NULL, '1', '5'),(NULL, '1', '7'),(NULL, '2', '8'),(NULL, '3', '9'),(NULL, '4', '8'),(NULL, '5', '10') ;

(2)explain 之 id

id 字段是 select查询的序列号,是一组数字,表示的是查询中执行select子句或者是操作表的顺序。id 情况有三种 :

  1. id 相同表示加载表的顺序是从上到下:

    explain select * from t_role r, t_user u, user_role ur where r.id = ur.role_id and u.id = ur.user_id ;
    

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HHqm2tkb-1634797593163)(C:\Users\30287\AppData\Roaming\Typora\typora-user-images\image-20211021131138763.png)]

  2. id 不同,id值越大,优先级越高,越先被执行:

EXPLAIN SELECT * FROM t_role WHERE id = (SELECT role_id FROM user_role WHERE user_id = (SELECT id FROM t_user WHERE username = 'stu1'))

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-rWYLjbQ7-1634797593164)(C:\Users\30287\AppData\Roaming\Typora\typora-user-images\image-20211021131216895.png)]

  1. id 有相同,也有不同,同时存在。id相同的可以认为是一组,从上往下顺序执行;在所有的组中,id的值越大,优先级越高,越先执行:

    EXPLAIN SELECT * FROM t_role r , (SELECT * FROM user_role ur WHERE ur.`user_id` = '2') a WHERE r.id = a.role_id ; 
    

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xIcoETrm-1634797593165)(C:\Users\30287\AppData\Roaming\Typora\typora-user-images\image-20211021131319328.png)]

(4)explain 之 select_type

select_type代表查询的类型,主要是用于区别普通查询、联合查询、子查询等的复杂查询

select_type 含义
SIMPLE 简单的select查询,查询中不包含子查询或者UNION
PRIMARY 查询中若包含任何复杂的子查询,最外层查询标记为该标识
SUBQUERY 在SELECT 或 WHERE 列表中包含了子查询
DERIVED 在FROM 列表中包含的子查询,被标记为 DERIVED(衍生) MYSQL会递归执行这些子查询,把结果放在临时表中
UNION 若第二个SELECT出现在UNION之后,则标记为UNION ; 若UNION包含在FROM子句的子查询中,外层SELECT将被标记为 : DERIVED
UNION RESULT 从UNION表获取结果的SELECT

(5)explain 之 table

展示这一行的数据是关于哪一张表的

(6)explain 之 type

type 显示的是访问类型,是较为重要的一个指标,可取值为:

type 含义
NULL MySQL不访问任何表,索引,直接返回结果
system 表只有一行记录(等于系统表),这是const类型的特例,一般不会出现
const 表示通过索引一次就找到了,const 用于比较primary key 或者 unique 索引。因为只匹配一行数据,所以很快。如将主键置于where列表中,MySQL 就能将该查询转换为一个常亮。const于将 “主键” 或 “唯一” 索引的所有部分与常量值进行比较
eq_ref 类似ref,区别在于使用的是唯一索引,使用主键的关联查询,关联查询出的记录只有一条。常见于主键或唯一索引扫描
ref 非唯一性索引扫描,返回匹配某个单独值的所有行。本质上也是一种索引访问,返回所有匹配某个单独值的所有行(多个)
range 只检索给定返回的行,使用一个索引来选择行。 where 之后出现 between , < , > , in 等操作。
index index 与 ALL的区别为 index 类型只是遍历了索引树, 通常比ALL 快, ALL 是遍历数据文件。
all 将遍历全表以找到匹配的行

结果值效率从最好到最坏以此是:

NULL > system > const > eq_ref > ref > fulltext > ref_or_null > index_merge > unique_subquery > index_subquery > range > index > ALL


system > const > eq_ref > ref > range > index > ALL

一般来说, 我们需要保证查询至少达到 range 级别, 最好达到ref 。

(7)explain 之 key

  • possible_keys : 显示可能应用在这张表的索引, 一个或多个。
  • key : 实际使用的索引, 如果为NULL, 则没有使用索引。
  • key_len : 表示索引中使用的字节数, 该值为索引字段最大可能长度,并非实际使用长度,在不损失精确性的前提下, 长度越短越好 。

(8)explain 之 rows

扫描行的数量

(9)explain 之 extra

其他的额外的执行计划信息,在该列展示:

extra 含义
using filesort 说明mysql会对数据使用一个外部的索引排序,而不是按照表内的索引顺序进行读取, 称为 “文件排序”, 效率低。
using temporary 使用了临时表保存中间结果,MySQL在对查询结果排序时使用临时表。常见于 order by 和 group by; 效率低
using index 表示相应的select操作使用了覆盖索引, 避免访问表的数据行, 效率不错。

五.SQL优化

5-1 索引优化

准备环境:

create table `tb_seller` (
	`sellerid` varchar (100),
	`name` varchar (100),
	`nickname` varchar (50),
	`password` varchar (60),
	`status` varchar (1),
	`address` varchar (100),
	`createtime` datetime,
    primary key(`sellerid`)
)engine=innodb default charset=utf8mb4; 

insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('alibaba','阿里巴巴','阿里小店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('baidu','百度科技有限公司','百度小店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('huawei','华为科技有限公司','华为小店','e10adc3949ba59abbe56e057f20f883e','0','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('itcast','传智播客教育科技有限公司','传智播客','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('itheima','黑马程序员','黑马程序员','e10adc3949ba59abbe56e057f20f883e','0','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('luoji','罗技科技有限公司','罗技小店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('oppo','OPPO科技有限公司','OPPO官方旗舰店','e10adc3949ba59abbe56e057f20f883e','0','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('ourpalm','掌趣科技股份有限公司','掌趣小店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('qiandu','千度科技','千度小店','e10adc3949ba59abbe56e057f20f883e','2','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('sina','新浪科技有限公司','新浪官方旗舰店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('xiaomi','小米科技','小米官方旗舰店','e10adc3949ba59abbe56e057f20f883e','1','西安市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('yijia','宜家家居','宜家家居旗舰店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');


create index idx_seller_name_sta_addr on tb_seller(name,status,address);

避免索引失效

  1. 全值匹配 ,对索引中所有列都指定具体值

    该情况下,索引生效,执行效率高:

    explain select * from tb_seller where name='小米科技' and status='1' and address='北京市';
    
  2. 最左前缀法则:如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最左前列开始,并且不跳过索引中的列:

    • 匹配最左前缀法则,走索引
    • 违法最左前缀法则 , 索引失效
    • 如果符合最左法则,但是出现跳跃某一列,只有最左列索引生效
  3. 范围查询右边的列,不能使用索引

    【MySQL高级】笔记-01_第10张图片

    根据前面的两个字段name , status 查询是走索引的, 但是最后一个条件address 没有用到索引

  4. 不要在索引列上进行运算操作, 否则索引将失效

  5. 字符串不加单引号,造成索引失效

    【MySQL高级】笔记-01_第11张图片

    由于,在查询是,没有对字符串加单引号,MySQL的查询优化器,会自动的进行类型转换,造成索引失效

  6. 尽量使用覆盖索引(只访问索引的查询(索引列完全包含查询列)),减少select * 。如果查询列,超出索引列,也会降低性能

  7. 用or分割开的条件, 如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到

    示例,name字段是索引列 , 而createtime不是索引列,中间是or进行连接是不走索引的 :

    explain select * from tb_seller where name='黑马程序员' or createtime = '2088-01-01 12:00:00';	
    
  8. 以%开头的Like模糊查询,索引失效。

    如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效

  9. 如果MySQL评估使用索引比全表更慢,则不使用索引

  10. is NULL , is NOT NULL 有时索引失效

  11. 尽量使用复合索引,而少使用单列索引

TIP :
using index :使用覆盖索引的时候就会出现

using where:在查找使用索引的情况下,需要回表去查询所需的数据

using index condition:查找使用了索引,但是需要回表查询数据

using index ; using where:查找使用了索引,但是需要的数据都在索引列中能找到,所以不需要回表查询数据

查看索引使用情况

show status like 'Handler_read%';	

show global status like 'Handler_read%';	

【MySQL高级】笔记-01_第12张图片

  • Handler_read_first:索引中第一条被读的次数。如果较高,表示服务器正执行大量全索引扫描(这个值越低越好)。
  • Handler_read_key:如果索引正在工作,这个值代表一个行被索引值读的次数,如果值越低,表示索引得到的性能改善不高,因为索引不经常使用(这个值越高越好)。
  • Handler_read_next :按照键顺序读下一行的请求数。如果你用范围约束或如果执行索引扫描来查询索引列,该值增加。
  • Handler_read_prev:按照键顺序读前一行的请求数。该读方法主要用于优化ORDER BY … DESC。
  • Handler_read_rnd :根据固定位置读一行的请求数。如果你正执行大量查询并需要对结果进行排序该值较高。你可能使用了大量需要MySQL扫描整个表的查询或你的连接没有正确使用键。这个值较高,意味着运行效率低,应该建立索引来补救。
  • Handler_read_rnd_next:在数据文件中读下一行的请求数。如果你正进行大量的表扫描,该值较高。通常说明你的表索引不正确或写入的查询没有利用索引。

5-2 优化insert语句

当进行数据的insert操作的时候,可以考虑采用以下几种优化方案:

  • 如果需要同时对一张表插入很多行数据时,应该尽量使用多个值表的insert语句,这种方式将大大的缩减客户端与数据库之间的连接、关闭等消耗。使得效率比分开执行的单个insert语句快。

    示例, 原始方式为:

    insert into tb_test values(1,'Tom');
    insert into tb_test values(2,'Cat');
    insert into tb_test values(3,'Jerry');
    

    优化后的方案为:

    insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
    
  • 手动开启事务后在进行数据插入

    start transaction;
    insert into tb_test values(1,'Tom');
    insert into tb_test values(2,'Cat');
    insert into tb_test values(3,'Jerry');
    commit;
    
  • 数据有序插入

    insert into tb_test values(4,'Tim');
    insert into tb_test values(1,'Tom');
    insert into tb_test values(3,'Jerry');
    insert into tb_test values(5,'Rose');
    insert into tb_test values(2,'Cat');
    

    优化后:

    insert into tb_test values(1,'Tom');
    insert into tb_test values(2,'Cat');
    insert into tb_test values(3,'Jerry');
    insert into tb_test values(4,'Tim');
    insert into tb_test values(5,'Rose');
    

5-3 优化order by语句

(1)环境准备

CREATE TABLE `emp` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `name` varchar(100) NOT NULL,
  `age` int(3) NOT NULL,
  `salary` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB  DEFAULT CHARSET=utf8mb4;

insert into `emp` (`id`, `name`, `age`, `salary`) values('1','Tom','25','2300');
insert into `emp` (`id`, `name`, `age`, `salary`) values('2','Jerry','30','3500');
insert into `emp` (`id`, `name`, `age`, `salary`) values('3','Luci','25','2800');
insert into `emp` (`id`, `name`, `age`, `salary`) values('4','Jay','36','3500');
insert into `emp` (`id`, `name`, `age`, `salary`) values('5','Tom2','21','2200');
insert into `emp` (`id`, `name`, `age`, `salary`) values('6','Jerry2','31','3300');
insert into `emp` (`id`, `name`, `age`, `salary`) values('7','Luci2','26','2700');
insert into `emp` (`id`, `name`, `age`, `salary`) values('8','Jay2','33','3500');
insert into `emp` (`id`, `name`, `age`, `salary`) values('9','Tom3','23','2400');
insert into `emp` (`id`, `name`, `age`, `salary`) values('10','Jerry3','32','3100');
insert into `emp` (`id`, `name`, `age`, `salary`) values('11','Luci3','26','2900');
insert into `emp` (`id`, `name`, `age`, `salary`) values('12','Jay3','37','4500');

create index idx_emp_age_salary on emp(age,salary);#创建复合索引

(2)两种排序方式

【MySQL高级】笔记-01_第13张图片

(3)Filesort 的优化

通过创建合适的索引,能够减少 Filesort 的出现,但是在某些情况下,条件限制不能让Filesort消失,那就需要加快 Filesort的排序操作。对于Filesort , MySQL 有两种排序算法:

  • 两次扫描算法:首先根据条件取出排序字段和行指针信息,然后在排序区 sort buffer 中排序,如果sort buffer不够,则在临时表 temporary table 中存储排序结果。完成排序之后,再根据行指针回表读取记录,该操作可能会导致大量随机 I/O 操作。(MySQL4.1 之前,使用该方式排序)
  • 一次扫描算法:一次性取出满足条件的所有字段,然后在排序区 sort buffer 中排序后直接输出结果集。排序时内存开销较大,但是排序效率比两次扫描算法要高。

MySQL 通过比较系统变量 max_length_for_sort_data 的大小和Query语句取出的字段总大小, 来判定是否那种排序算法,如果max_length_for_sort_data 更大,那么使用第二种优化之后的算法;否则使用第一种。

可以适当提高 sort_buffer_sizemax_length_for_sort_data 系统变量,来增大排序区的大小,提高排序的效率

查看指令:

SHOW VARIABLES LIKE 'max_length_for_sort_data';
SHOW VARIABLES LIKE 'sort_buffer_size';

5-4 优化group by 语句

由于GROUP BY 实际上也同样会进行排序操作,而且与ORDER BY 相比,GROUP BY 主要只是多了排序之后的分组操作。当然,如果在分组的时候还使用了其他的一些聚合函数,那么还需要一些聚合函数的计算。所以,在GROUP BY 的实现过程中,与 ORDER BY 一样也可以利用到索引

先删除之前的复合索引:

drop index idx_emp_age_salary on emp;

如果查询包含 group by 但是用户想要避免排序结果的消耗, 则可以执行order by null 禁止排序。如下 :

优化前:

【MySQL高级】笔记-01_第14张图片

优化后:

【MySQL高级】笔记-01_第15张图片

还可以创建索引

CREATE INDEX idx_emp_age_salary ON emp(age,salary);

【MySQL高级】笔记-01_第16张图片

5-5 优化嵌套查询

可以将子查询尽量替换为多表连接查询(JOIN)

优化前:

【MySQL高级】笔记-01_第17张图片

优化后:

【MySQL高级】笔记-01_第18张图片

连接(Join)查询之所以更有效率一些 ,是因为MySQL不需要在内存中创建临时表来完成这个逻辑上需要两个步骤的查询工作。

5-6 优化OR条件

对于包含OR的查询子句,如果要利用索引,则OR之间的每个条件列都必须用到索引 , 而且不能使用到复合索引; 如果没有索引,则应该考虑增加索引。

例子:

explain select * from emp where id = 1 or age = 30;

【MySQL高级】笔记-01_第19张图片

建议使用 union 替换 or

EXPLAIN SELECT * FROM emp WHERE id=1 UNION SELECT * FROM emp WHERE age=20;

【MySQL高级】笔记-01_第20张图片

我们来比较下重要指标,发现主要差别是 type 和 ref 这两项

type 显示的是访问类型,是较为重要的一个指标,结果值从好到坏依次是:

system > const > eq_ref > ref > fulltext > ref_or_null  > index_merge > unique_subquery > index_subquery > range > index > ALL

UNION 语句的 type 值为 ref,OR 语句的 type 值为 range,可以看到这是一个很明显的差距

UNION 语句的 ref 值为 const,OR 语句的 ref 值为 null,const 表示是常量值引用,非常快

这两项的差距就说明了 UNION 要优于 OR 。

5-7 优化分页查询

一般分页查询时,通过创建覆盖索引能够比较好地提高性能。一个常见又非常头疼的问题就是 limit 2000000,10 ,此时需要MySQL排序前2000010 记录,仅仅返回2000000 - 2000010 的记录,其他记录丢弃,查询排序的代价非常大 。

在这里插入图片描述

优化思路一

在索引上完成排序分页操作,最后根据主键关联回原表查询所需要的其他列内容。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BOF4Ib6y-1634797593189)(file://C:\Users\30287\Desktop\Java%E5%AD%A6%E4%B9%A0%E8%A7%86%E9%A2%91\mysql%E9%AB%98%E7%BA%A7\day02%E6%96%87%E6%A1%A3\assets\1556416102800.png?lastModify=1634700056)]

优化思路二

该方案适用于主键自增的表(不能有断层),可以把Limit 查询转换成某个位置的查询 。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3RhM6Y2S-1634797593191)(file://C:\Users\30287\Desktop\Java%E5%AD%A6%E4%B9%A0%E8%A7%86%E9%A2%91\mysql%E9%AB%98%E7%BA%A7\day02%E6%96%87%E6%A1%A3\assets\1556363928151.png?lastModify=1634700078)]

5-8 使用SQL提示

SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。

USE INDEX

在查询语句中表名的后面,添加 use index 来提供希望MySQL去参考的索引列表,就可以让MySQL不再考虑其他可用的索引。

EXPLAIN SELECT * FROM tb_seller  USE INDEX(idx_seller_name_sta_addr) WHERE NAME='小米科技';

IGNORE INDEX

如果用户只是单纯的想让MySQL忽略一个或者多个索引,则可以使用 ignore index 作为 hint 。

EXPLAIN SELECT * FROM tb_seller  IGNORE INDEX(idx_seller_name_sta_addr) WHERE NAME='小米科技';

FORCE INDEX

为强制MySQL使用一个特定的索引,可在查询中使用 force index 作为hint

EXPLAIN SELECT * FROM tb_seller  FORCE INDEX(idx_seller_address) WHERE address='北京市';

5-9 大批量插入数据

当使用load 命令导入数据的时候,适当的设置可以提高导入的效率:

【MySQL高级】笔记-01_第21张图片

对于 InnoDB 类型的表,有以下几种方式可以提高导入的效率:

  • 主键顺序插入:因为InnoDB类型的表是按照主键的顺序保存的,所以将导入的数据按照主键的顺序排列,可以有效的提高导入数据的效率。如果InnoDB表没有主键,那么系统会自动默认创建一个内部列作为主键,所以如果可以给表创建一个主键,将可以利用这点,来提高导入数据的效率。
  • 关闭唯一性校验:在导入数据前执行 SET UNIQUE_CHECKS=0,关闭唯一性校验,在导入结束后执行SET UNIQUE_CHECKS=1,恢复唯一性校验,可以提高导入的效率。
  • 手动提交事务:如果应用使用自动提交的方式,建议在导入前执行 SET AUTOCOMMIT=0,关闭自动提交,导入结束后再执行 SET AUTOCOMMIT=1,打开自动提交,也可以提高导入的效率。
    LAIN SELECT * FROM tb_seller USE INDEX(idx_seller_name_sta_addr) WHERE NAME=‘小米科技’;

最后喜欢的小伙伴别忘了一键三连哦
【MySQL高级】笔记-01_第22张图片

你可能感兴趣的:(数据库学习,mysql,数据库,面试,java,sql)