头文件:http://trac.nginx.org/nginx/browser/nginx/src/core/ngx_palloc.h
源文件:http://trac.nginx.org/nginx/browser/nginx/src/core/ngx_palloc.c
先来学习一下nginx内存池的几个主要数据结构:
ngx_pool_data_t(内存池数据块结构)
1: typedef struct {
2: u_char *last;
3: u_char *end;
4: ngx_pool_t *next;
5: ngx_uint_t failed;
6: } ngx_pool_data_t;
ngx_pool_s(内存池头部结构)
1: struct ngx_pool_s {
2: ngx_pool_data_t d;
3: size_t max;
4: ngx_pool_t *current;
5: ngx_chain_t *chain;
6: ngx_pool_large_t *large;
7: ngx_pool_cleanup_t *cleanup;
8: ngx_log_t *log;
9: };
由ngx_pool_data_t和ngx_pool_t组成的nginx内存池结构如下图所示:
在分析内存池方法前,需要对几个主要的内存相关函数作一下介绍:
ngx_alloc:(只是对malloc进行了简单的封装)
1: void *2: ngx_alloc(size_t size, ngx_log_t *log)
3: {
4: void *p;5:
6: p = malloc(size);
7: if (p == NULL) {8: ngx_log_error(NGX_LOG_EMERG, log, ngx_errno,
9: "malloc(%uz) failed", size);10: }
11:
12: ngx_log_debug2(NGX_LOG_DEBUG_ALLOC, log, 0, "malloc: %p:%uz", p, size);13:
14: return p;15: }
ngx_calloc:(调用malloc并初始化为0)
1: void *2: ngx_calloc(size_t size, ngx_log_t *log)
3: {
4: void *p;5:
6: p = ngx_alloc(size, log);
7:
8: if (p) {9: ngx_memzero(p, size);
10: }
11:
12: return p;13: }
ngx_memzero:
1: #define ngx_memzero(buf, n) (void) memset(buf, 0, n)
ngx_free :
1: #define ngx_free free
ngx_memalign:
1: void *2: ngx_memalign(size_t alignment, size_t size, ngx_log_t *log)
3: {
4: void *p;5: int err;6:
7: err = posix_memalign(&p, alignment, size);
8:
9: if (err) {10: ngx_log_error(NGX_LOG_EMERG, log, err,
11: "posix_memalign(%uz, %uz) failed", alignment, size);12: p = NULL;
13: }
14:
15: ngx_log_debug3(NGX_LOG_DEBUG_ALLOC, log, 0,
16: "posix_memalign: %p:%uz @%uz", p, size, alignment);17:
18: return p;19: }
这里alignment主要是针对部分unix平台需要动态的对齐,对POSIX 1003.1d提供的posix_memalign( )进行封装,在大多数情况下,编译器和C库透明地帮你处理对齐问题。nginx中通过宏NGX_HAVE_POSIX_MEMALIGN来控制;调用 posix_memalign( )成功时会返回 size字节的动态内存,并且这块内存的地址是 alignment的倍数。参数 alignment必须是2的幂,还是 void指针的大小的倍数。返回的内存块的地址放在了 memptr里面,函数返回值是 0.
创建内存池 | ngx_pool_t * ngx_create_pool(size_t size, ngx_log_t *log); |
销毁内存池 | void ngx_destroy_pool(ngx_pool_t *pool); |
重置内存池 | void ngx_reset_pool(ngx_pool_t *pool); |
内存申请(对齐) | void * ngx_palloc(ngx_pool_t *pool, size_t size); |
内存申请(不对齐) | void * ngx_pnalloc(ngx_pool_t *pool, size_t size); |
内存清除 | ngx_int_t ngx_pfree(ngx_pool_t *pool, void *p); |
ngx_create_pool用于创建一个内存池,我们创建时,传入我们的需要的初始大小:
1: ngx_pool_t *
2: ngx_create_pool(size_t size, ngx_log_t *log)
3: {
4: ngx_pool_t *p;
5:
6: //以16(NGX_POOL_ALIGNMENT)字节对齐分配size内存7: p = ngx_memalign(NGX_POOL_ALIGNMENT, size, log);
8: if (p == NULL) {9: return NULL;10: }
11:
12: //初始状态:last指向ngx_pool_t结构体之后数据取起始位置13: p->d.last = (u_char *) p + sizeof(ngx_pool_t);14: //end指向分配的整个size大小的内存的末尾15: p->d.end = (u_char *) p + size;
16:
17: p->d.next = NULL;
18: p->d.failed = 0;
19:
20: size = size - sizeof(ngx_pool_t);21: //#define NGX_MAX_ALLOC_FROM_POOL (ngx_pagesize - 1),内存池最大不超过4095,x86中页的大小为4K22: p->max = (size < NGX_MAX_ALLOC_FROM_POOL) ? size : NGX_MAX_ALLOC_FROM_POOL;
23:
24: p->current = p;
25: p->chain = NULL;
26: p->large = NULL;
27: p->cleanup = NULL;
28: p->log = log;
29:
30: return p;31: }
nginx对内存的管理分为大内存与小内存,当某一个申请的内存大于某一个值时,就需要从大内存中分配空间,否则从小内存中分配空间。
nginx中的内存池是在创建的时候就设定好了大小,在以后分配小块内存的时候,如果内存不够,则是重新创建一块内存串到内存池中,而不是将原有的内存池进行扩张。当要分配大块内存是,则是在内存池外面再分配空间进行管理的,称为大块内存池。
1: void *2: ngx_palloc(ngx_pool_t *pool, size_t size)
3: {
4: u_char *m;
5: ngx_pool_t *p;
6:
7: //如果申请的内存大小小于内存池的max值8: if (size <= pool->max) {9:
10: p = pool->current;
11:
12: do {13: //对内存地址进行对齐处理14: m = ngx_align_ptr(p->d.last, NGX_ALIGNMENT);
15:
16: //如果当前内存块够分配内存,则直接分配17: if ((size_t) (p->d.end - m) >= size)18: {
19: p->d.last = m + size;
20:
21: return m;22: }
23:
24: //如果当前内存块有效容量不够分配,则移动到下一个内存块进行分配25: p = p->d.next;
26:
27: } while (p);28:
29: //当前所有内存块都没有空闲了,开辟一块新的内存,如下2详细解释30: return ngx_palloc_block(pool, size);31: }
32:
33: //分配大块内存34: return ngx_palloc_large(pool, size);35: }
需要说明的几点:
1、ngx_align_ptr,这是一个用来内存地址取整的宏,非常精巧,一句话就搞定了。作用不言而喻,取整可以降低CPU读取内存的次数,提高性能。因为这里并没有真正意义调用malloc等函数申请内存,而是移动指针标记而已,所以内存对齐的活,C编译器帮不了你了,得自己动手。
1: #define ngx_align_ptr(p, a) \
2: (u_char *) (((uintptr_t) (p) + ((uintptr_t) a - 1)) & ~((uintptr_t) a - 1))
2、开辟一个新的内存块 ngx_palloc_block(ngx_pool_t *pool, size_t size)
这个函数是用来分配新的内存块,为pool内存池开辟一个新的内存块,并申请使用size大小的内存;
1: static void *2: ngx_palloc_block(ngx_pool_t *pool, size_t size)
3: {
4: u_char *m;
5: size_t psize;
6: ngx_pool_t *p, *new;7:
8: //计算内存池第一个内存块的大小9: psize = (size_t) (pool->d.end - (u_char *) pool);
10:
11: //分配和第一个内存块同样大小的内存块12: m = ngx_memalign(NGX_POOL_ALIGNMENT, psize, pool->log);
13: if (m == NULL) {14: return NULL;15: }
16:
17: new = (ngx_pool_t *) m;18:
19: //设置新内存块的end20: new->d.end = m + psize;21: new->d.next = NULL;22: new->d.failed = 0;23:
24: //将指针m移动到d后面的一个位置,作为起始位置25: m += sizeof(ngx_pool_data_t);26: //对m指针按4字节对齐处理27: m = ngx_align_ptr(m, NGX_ALIGNMENT);
28: //设置新内存块的last,即申请使用size大小的内存29: new->d.last = m + size;30:
31: //这里的循环用来找最后一个链表节点,这里failed用来控制循环的长度,如果分配失败次数达到5次,就忽略,不需要每次都从头找起32: for (p = pool->current; p->d.next; p = p->d.next) {33: if (p->d.failed++ > 4) {34: pool->current = p->d.next;
35: }
36: }
37:
38: p->d.next = new;39:
40: return m;41: }
3、分配大块内存 ngx_palloc_large(ngx_pool_t *pool, size_t size)
在ngx_palloc中首先会判断申请的内存大小是否超过内存块的最大限值,如果超过,则直接调用ngx_palloc_large,进入大内存块的分配流程;
1: static void *2: ngx_palloc_large(ngx_pool_t *pool, size_t size)
3: {
4: void *p;5: ngx_uint_t n;
6: ngx_pool_large_t *large;
7:
8: // 直接在系统堆中分配一块大小为size的空间9: p = ngx_alloc(size, pool->log);
10: if (p == NULL) {11: return NULL;12: }
13:
14: n = 0;
15:
16: // 查找到一个空的large区,如果有,则将刚才分配的空间交由它管理17: for (large = pool->large; large; large = large->next) {18: if (large->alloc == NULL) {19: large->alloc = p;
20: return p;21: }
22: //为了提高效率, 如果在三次内没有找到空的large结构体,则创建一个23: if (n++ > 3) {24: break;25: }
26: }
27:
28:
29: large = ngx_palloc(pool, sizeof(ngx_pool_large_t));30: if (large == NULL) {31: ngx_free(p);
32: return NULL;33: }
34:
35: //将large链接到内存池36: large->alloc = p;
37: large->next = pool->large;
38: pool->large = large;
39:
40: return p;41: }
整个内存池分配如下图:
1: void2: ngx_reset_pool(ngx_pool_t *pool)
3: {
4: ngx_pool_t *p;
5: ngx_pool_large_t *l;
6:
7: //释放大块内存8: for (l = pool->large; l; l = l->next) {9: if (l->alloc) {10: ngx_free(l->alloc);
11: }
12: }
13:
14: // 重置所有小块内存区15: for (p = pool; p; p = p->d.next) {16: p->d.last = (u_char *) p + sizeof(ngx_pool_t);17: p->d.failed = 0;
18: }
19:
20: pool->current = pool;
21: pool->chain = NULL;
22: pool->large = NULL;
23: }
1: ngx_int_t
2: ngx_pfree(ngx_pool_t *pool, void *p)
3: {
4: ngx_pool_large_t *l;
5:
6: //只检查是否是大内存块,如果是大内存块则释放
7: for (l = pool->large; l; l = l->next) {
8: if (p == l->alloc) {
9: ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0,
10: "free: %p", l->alloc);
11: ngx_free(l->alloc);
12: l->alloc = NULL;
13:
14: return NGX_OK;
15: }
16: }
17:
18: return NGX_DECLINED;
19: }
所以说Nginx内存池中大内存块和小内存块的分配与释放是不一样的。我们在使用内存池时,可以使用ngx_palloc进行分配,使用ngx_pfree释放。而对于大内存,这样做是没有问题的,而对于小内存就不一样了,分配的小内存,不会进行释放。因为大内存块的分配只对前3个内存块进行检查,否则就直接分配内存,所以大内存块的释放必须及时。
Nginx内存池支持通过回调函数,对外部资源的清理。ngx_pool_cleanup_t是回调函数结构体,它在内存池中以链表形式保存,在内存池进行销毁时,循环调用这些回调函数对数据进行清理。
1: typedef struct ngx_pool_cleanup_s ngx_pool_cleanup_t;2:
3: struct ngx_pool_cleanup_s {4: ngx_pool_cleanup_pt handler;
5: void *data;6: ngx_pool_cleanup_t *next;
7: };
其中
next://指向下一个回调函数结构体;
如果我们需要添加自己的回调函数,则需要调用ngx_pool_cleanup_add来得到一个ngx_pool_cleanup_t,然后设置handler为我们的清理函数,并设置data为我们要清理的数据。这样在ngx_destroy_pool中会循环调用handler清理数据;
1: ngx_pool_cleanup_t *
2: ngx_pool_cleanup_add(ngx_pool_t *p, size_t size)
3: {
4: ngx_pool_cleanup_t *c;
5:
6: //分配ngx_pool_cleanup_t
7: c = ngx_palloc(p, sizeof(ngx_pool_cleanup_t));
8: if (c == NULL) {
9: return NULL;
10: }
11:
12: //给data分配内存
13: if (size) {
14: c->data = ngx_palloc(p, size);
15: if (c->data == NULL) {
16: return NULL;
17: }
18:
19: } else {
20: c->data = NULL;
21: }
22:
23: //将回掉函数链入内存池
24: c->handler = NULL;
25: c->next = p->cleanup;
26:
27: p->cleanup = c;
28:
29: ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, p->log, 0, "add cleanup: %p", c);
30:
31: return c;
32: }
比如:我们可以将一个开打的文件描述符作为资源挂载到内存池上,同时提供一个关闭文件描述的函数注册到handler上,那么内存池在释放的时候,就会调用我们提供的关闭文件函数来处理文件描述符资源了。
1: void
2: ngx_destroy_pool(ngx_pool_t *pool)
3: {
4: ngx_pool_t *p, *n;
5: ngx_pool_large_t *l;
6: ngx_pool_cleanup_t *c;
7:
8: //依次调用外部析构回调函数
9: for (c = pool->cleanup; c; c = c->next) {
10: if (c->handler) {
11: ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0,
12: "run cleanup: %p", c);
13: c->handler(c->data);
14: }
15: }
16:
17: //释放大块内存
18: for (l = pool->large; l; l = l->next) {
19:
20: ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0, "free: %p", l->alloc);
21:
22: if (l->alloc) {
23: ngx_free(l->alloc);
24: }
25: }
26: //释放小块内存
27: for (p = pool, n = pool->d.next; /* void */; p = n, n = n->d.next) {
28: ngx_free(p);
29:
30: if (n == NULL) {
31: break;
32: }
33: }
34: }