本系列是 The art of multipropcessor programming 的读书笔记,在原版图书的基础上,结合 OpenJDK 11 以上的版本的代码进行理解和实现。并根据个人的查资料以及理解的经历,给各位想更深入理解的人分享一些个人的资料
自旋锁与争用
1. 再论 TAS 与 TTAS 的自旋锁
在前面的章节我们实现了 TASLock 与 TTASLock 自旋锁,由于 compareAndSet 都会导致互连线上的广播,这样会导致所有线程的延迟,包括没有等待锁的线程。更糟糕的一点是,compareAndSet 调用会让其他的处理器丢弃自己高速缓存中的所副本,这样每一个正在自旋的线程几乎每次都会遇到一个缓存缺失cache miss,需要通过总线获取新的值。还有更糟糕的是,当持有锁的线程,尝试释放锁的时候,由于互连线可能被自旋的线程所独占,所以释放可能被延迟。以上就是 TASLock 为何性能如此之差的原因。
下面分析当锁被线程 A 持有时,TTASLock 锁的行为。线程 B 第一次读锁时发生 cache 缺失,从而阻塞等待值被载入它的 cache 中。只要 A 持有锁,B 就会不断读取该值,且每次都命中 cache。这样,在 A 持有锁时,不会产生总线流量,而且也不会降低其他线程的访问速度。此外,A 释放锁也不会被正在自旋的线程所延迟。
但是,在锁释放的时候,会引起一场总线风暴:A 线程将 false 值写入锁变量来释放锁,该操作将会使自旋线程的 cache 副本立刻失效。
2. Exponential Backoff(指数回退,或者称为指数补偿)
我们在微服务系统设计中,可能会经常看到 Backoff 这个名词。他经常出现在微服务调用失败,重试的时候,经常不会是直接重试,而是有一定间隔的重试。这个重试间隔也一般不是固定的,对于同一个请求,重试间隔和重试次数是有一定关系的。最常用的就是指数函数关系。
这个设计其实源于底层适应硬件的软件设计。首先我们来明确一个概念,争用(contention):多线程争用同一资源,这里指的是锁。高争用指的是大量线程竞争同一个锁,低争用则指的是相反的情况。
在我们之前实现的 TTASLock 中,lock 主要分为两步:不断读取锁状态,读取到空闲时,尝试获取锁。如果一个线程通过这个完整过程但是获取锁失败,其他线程获取到了这个锁,那么很可能这个锁面临着高争用的情况。试图获取一个高争用的资源,是应该避免的操作。因为这样线程获取资源的概率非常小,但是造成的总线流量非常大。相反,如果让线程后退一段时间,不去争用锁,这样效率会更高。
线程再次重试之前应该后退多久呢?一种比较好的方式就是让后退的时间与重试的次数成正比,因为重试次数越多,高争用的可能性越高。下面是一个简单的方法:
- 读取锁状态
- 读取到空闲时,尝试获取锁
- 如果获取锁失败,随机后退一段时间
- 重复步骤 1 ~ 3,如果获取锁失败,则将步骤 3 的后退时间加倍,直到一个固定的最大值 maxDelay 为止。
我们来实现下这个锁:
public class Backoff {
private final long minDelay;
private final long maxDelay;
private long current;
public Backoff(long minDelay, long maxDelay) {
this.minDelay = minDelay;
this.maxDelay = maxDelay;
//初始随机最大为 minDelay
this.current = minDelay;
}
public void backoff() {
//使用 ThreadLocalRandom 防止并发影响随机
long delay = ThreadLocalRandom.current().nextLong(1, current);
//随着次数翻倍,直到 maxDelay
current = Math.min(current * 2L, maxDelay);
try {
Thread.sleep(delay);
} catch (InterruptedException e) {
//ignore
}
}
}
public class TTASWithBackoffLock implements Lock {
private boolean locked = false;
private final Backoff backoff = new Backoff(10L, 100L);
//操作 locked 的句柄
private static final VarHandle LOCKED;
static {
try {
//初始化句柄
LOCKED = MethodHandles.lookup().findVarHandle(TTASWithBackoffLock.class, "locked", boolean.class);
} catch (Exception e) {
throw new Error(e);
}
}
@Override
public void lock() {
while (true) {
//普通读取 locked,如果被占用,则一直 SPIN
while ((boolean) LOCKED.get(this)) {
//让出 CPU 资源,这是目前实现 SPIN 效果最好的让出 CPU 的方式,当线程数量远大于 CPU 数量时,效果比 Thread.yield 好,从及时性角度效果远好于 Thread.sleep
Thread.onSpinWait();
}
//成功代表获取了锁
if (LOCKED.compareAndSet(this, false, true)) {
return;
} else {
//失败则回退
backoff.backoff();
}
}
}
@Override
public void unlock() {
LOCKED.setVolatile(this, false);
}
}
之后,我们使用 JMH 测试 TTASWithBackoffLock 与之前实现的 TTASLock 锁的性能差异:
//测试指标为单次调用时间
@BenchmarkMode(Mode.SingleShotTime)
//需要预热,排除 jit 即时编译以及 JVM 采集各种指标带来的影响,由于我们单次循环很多次,所以预热一次就行
@Warmup(iterations = 1)
//单线程即可
@Fork(1)
//测试次数,我们测试10次
@Measurement(iterations = 10)
//定义了一个类实例的生命周期,所有测试线程共享一个实例
@State(value = Scope.Benchmark)
public class LockTest {
private static class ValueHolder {
int count = 0;
}
//测试不同线程数量
@Param(value = {"1", "2", "5", "10", "20", "50", "100"})
private int threadsCount;
@Benchmark
public void testTTASWithBackoffLock(Blackhole blackhole) throws InterruptedException {
test(new TTASWithBackoffLock());
}
@Benchmark
public void testTTASLock(Blackhole blackhole) throws InterruptedException {
test(new TTASLock());
}
private void test(Lock lock) throws InterruptedException {
ValueHolder valueHolder = new ValueHolder();
Thread[] threads = new Thread[threadsCount];
//测试累加 5000000 次
for (int i = 0; i < threads.length; i++) {
threads[i] = new Thread(() -> {
for (int j = 0; j < 5000000 / threads.length; j++) {
lock.lock();
try {
valueHolder.count++;
} finally {
lock.unlock();
}
}
});
threads[i].start();
}
for (int i = 0; i < threads.length; i++) {
threads[i].join();
}
if (valueHolder.count != 5000000) {
throw new RuntimeException("something wrong in lock implementation");
}
}
public static void main(String[] args) throws RunnerException {
Options opt = new OptionsBuilder().include(LockTest.class.getSimpleName()).build();
new Runner(opt).run();
}
}
其结果是:
Benchmark (threadsCount) Mode Cnt Score Error Units
LockTest.testTTASLock 1 ss 10 0.064 ± 0.005 s/op
LockTest.testTTASLock 2 ss 10 0.138 ± 0.044 s/op
LockTest.testTTASLock 5 ss 10 0.426 ± 0.100 s/op
LockTest.testTTASLock 10 ss 10 0.699 ± 0.128 s/op
LockTest.testTTASLock 20 ss 10 0.932 ± 0.241 s/op
LockTest.testTTASLock 50 ss 10 1.162 ± 0.542 s/op
LockTest.testTTASLock 100 ss 10 1.379 ± 0.939 s/op
LockTest.testTTASWithBackoffLock 1 ss 10 0.068 ± 0.008 s/op
LockTest.testTTASWithBackoffLock 2 ss 10 0.080 ± 0.023 s/op
LockTest.testTTASWithBackoffLock 5 ss 10 0.135 ± 0.037 s/op
LockTest.testTTASWithBackoffLock 10 ss 10 0.187 ± 0.072 s/op
LockTest.testTTASWithBackoffLock 20 ss 10 0.200 ± 0.063 s/op
LockTest.testTTASWithBackoffLock 50 ss 10 0.239 ± 0.052 s/op
LockTest.testTTASWithBackoffLock 100 ss 10 0.261 ± 0.042 s/op
Process finished with exit code 0
从结果上可以看出,性能变好了很多。
虽然基于回退的锁实现很简单,也提升了性能。但是针对不同的机器,以及不同的配置,很难找出通用的最合适的 minDelay 以及 maxDelay。