TensorFlowSharp入门使用C#编写TensorFlow人工智能应用学习

文章末尾博主为大家整理了人工智能学习资料有想提升自身能力和转行的朋友可以免费领取。

历史优秀文章推荐:

人工智能图像识别深度解析:弱人工智能时代最重要的一个应用

AI人士不得不了解的十大机器算法

一文看懂自然语言处理-NLP(4个典型应用+5个难点+6个实现步骤)

TensorFlow简单介绍
TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow的表现比第一代的DistBelief快了2倍。

TensorFlow 内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用TensorFlow。任何基于梯度的机器学习算法都能够受益于TensorFlow的自动分化(auto-differentiation)。通过灵活的Python接口,要在TensorFlow中表达想法也会很容易。

TensorFlow 对于实际的产品也是很有意义的。将思路从桌面GPU训练无缝搬迁到手机中运行。

示例Python代码:

import tensorflow as tf
import numpy as np
 
# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3
 
# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but TensorFlow will
# figure that out for us.)
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b
 
# Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
 
# Before starting, initialize the variables.  We will 'run' this first.
init = tf.global_variables_initializer()
 
# Launch the graph.
sess = tf.Session()
sess.run(init)
 
# Fit the line.
for step in range(201):
    sess.run(train)
    if step % 20 == 0:
        print(step, sess.run(W), sess.run(b))
 
# Learns best fit is W: [0.1], b: [0.3]
使用TensorFlowSharp 
GitHub:https://github.com/migueldeicaza/TensorFlowSharp

官方源码库,该项目支持跨平台,使用Mono。

可以使用NuGet 安装TensorFlowSharp,如下:

Install-Package TensorFlowSharp
编写简单应用
使用VS2017新建一个.NET Framework 控制台应用 tensorflowdemo,接着添加TensorFlowSharp 引用。

TensorFlowSharp 包比较大,需要耐心等待。

然后在项目属性中生成->平台目标 改为 x64。

打开Program.cs 写入如下代码:

static void Main(string[] args)
        {
            using (var session = new TFSession())
            {
                var graph = session.Graph;
                Console.WriteLine(TFCore.Version);
                var a = graph.Const(2);
                var b = graph.Const(3);
                Console.WriteLine("a=2 b=3");
 
                // 两常量加
                var addingResults = session.GetRunner().Run(graph.Add(a, b));
                var addingResultValue = addingResults[0].GetValue();
                Console.WriteLine("a+b={0}", addingResultValue);
 
                // 两常量乘
                var multiplyResults = session.GetRunner().Run(graph.Mul(a, b));
                var multiplyResultValue = multiplyResults[0].GetValue();
                Console.WriteLine("a*b={0}", multiplyResultValue);
                var tft = new TFTensor(Encoding.UTF8.GetBytes($"Hello TensorFlow Version {TFCore.Version}! LineZero"));
                var hello = graph.Const(tft);
                var helloResults = session.GetRunner().Run(hello);
                Console.WriteLine(Encoding.UTF8.GetString((byte[])helloResults[0].GetValue()));
            }
            Console.ReadKey();
        }
运行程序结果如下:

TensorFlow C# image recognition
图像识别示例体验

https://github.com/migueldeicaza/TensorFlowSharp/tree/master/Examples/ExampleInceptionInference

下面学习一个实际的人工智能应用,是非常简单的一个示例,图像识别。

新建一个 imagerecognition .NET Framework 控制台应用项目,接着添加TensorFlowSharp 引用。

然后在项目属性中生成->平台目标 改为 x64。

接着编写如下代码:

class Program
    {
        static string dir, modelFile, labelsFile;
        public static void Main(string[] args)
        {
            dir = "tmp";
            List files = Directory.GetFiles("img").ToList();
            ModelFiles(dir);
            var graph = new TFGraph();
            // 从文件加载序列化的GraphDef
            var model = File.ReadAllBytes(modelFile);
            //导入GraphDef
            graph.Import(model, "");
            using (var session = new TFSession(graph))
            {
                var labels = File.ReadAllLines(labelsFile);
                Console.WriteLine("TensorFlow图像识别 LineZero");
                foreach (var file in files)
                {
                    // Run inference on the image files
                    // For multiple images, session.Run() can be called in a loop (and
                    // concurrently). Alternatively, images can be batched since the model
                    // accepts batches of image data as input.
                    var tensor = CreateTensorFromImageFile(file);
 
                    var runner = session.GetRunner();
                    runner.AddInput(graph["input"][0], tensor).Fetch(graph["output"][0]);
                    var output = runner.Run();
                    // output[0].Value() is a vector containing probabilities of
                    // labels for each image in the "batch". The batch size was 1.
                    // Find the most probably label index.
 
                    var result = output[0];
                    var rshape = result.Shape;
                    if (result.NumDims != 2 || rshape[0] != 1)
                    {
                        var shape = "";
                        foreach (var d in rshape)
                        {
                            shape += $"{d} ";
                        }
                        shape = shape.Trim();
                        Console.WriteLine($"Error: expected to produce a [1 N] shaped tensor where N is the number of labels, instead it produced one with shape [{shape}]");
                        Environment.Exit(1);
                    }
 
                    // You can get the data in two ways, as a multi-dimensional array, or arrays of arrays, 
                    // code can be nicer to read with one or the other, pick it based on how you want to process
                    // it
                    bool jagged = true;
 
                    var bestIdx = 0;
                    float p = 0, best = 0;
 
                    if (jagged)
                    {
                        var probabilities = ((float[][])result.GetValue(jagged: true))[0];
                        for (int i = 0; i < probabilities.Length; i++)
                        {
                            if (probabilities[i] > best)
                            {
                                bestIdx = i;
                                best = probabilities[i];
                            }
                        }
 
                    }
                    else
                    {
                        var val = (float[,])result.GetValue(jagged: false);
 
                        // Result is [1,N], flatten array
                        for (int i = 0; i < val.GetLength(1); i++)
                        {
                            if (val[0, i] > best)
                            {
                                bestIdx = i;
                                best = val[0, i];
                            }
                        }
                    }
 
                    Console.WriteLine($"{Path.GetFileName(file)} 最佳匹配: [{bestIdx}] {best * 100.0}% 标识为:{labels[bestIdx]}");
                }
            }
            Console.ReadKey();
        }
 
        // Convert the image in filename to a Tensor suitable as input to the Inception model.
        static TFTensor CreateTensorFromImageFile(string file)
        {
            var contents = File.ReadAllBytes(file);
 
            // DecodeJpeg uses a scalar String-valued tensor as input.
            var tensor = TFTensor.CreateString(contents);
 
            TFGraph graph;
            TFOutput input, output;
 
            // Construct a graph to normalize the image
            ConstructGraphToNormalizeImage(out graph, out input, out output);
 
            // Execute that graph to normalize this one image
            using (var session = new TFSession(graph))
            {
                var normalized = session.Run(
                         inputs: new[] { input },
                         inputValues: new[] { tensor },
                         outputs: new[] { output });
 
                return normalized[0];
            }
        }
 
        // The inception model takes as input the image described by a Tensor in a very
        // specific normalized format (a particular image size, shape of the input tensor,
        // normalized pixel values etc.).
        //
        // This function constructs a graph of TensorFlow operations which takes as
        // input a JPEG-encoded string and returns a tensor suitable as input to the
        // inception model.
        static void ConstructGraphToNormalizeImage(out TFGraph graph, out TFOutput input, out TFOutput output)
        {
            // Some constants specific to the pre-trained model at:
            // https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
            //
            // - The model was trained after with images scaled to 224x224 pixels.
            // - The colors, represented as R, G, B in 1-byte each were converted to
            //   float using (value - Mean)/Scale.
 
            const int W = 224;
            const int H = 224;
            const float Mean = 117;
            const float Scale = 1;
 
            graph = new TFGraph();
            input = graph.Placeholder(TFDataType.String);
 
            output = graph.Div(
                x: graph.Sub(
                    x: graph.ResizeBilinear(
                        images: graph.ExpandDims(
                            input: graph.Cast(
                                graph.DecodeJpeg(contents: input, channels: 3), DstT: TFDataType.Float),
                            dim: graph.Const(0, "make_batch")),
                        size: graph.Const(new int[] { W, H }, "size")),
                    y: graph.Const(Mean, "mean")),
                y: graph.Const(Scale, "scale"));
        }
 
        ///


        /// 下载初始Graph和标签
        ///

        ///
        static void ModelFiles(string dir)
        {
            string url = "https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip";
 
            modelFile = Path.Combine(dir, "tensorflow_inception_graph.pb");
            labelsFile = Path.Combine(dir, "imagenet_comp_graph_label_strings.txt");
            var zipfile = Path.Combine(dir, "inception5h.zip");
 
            if (File.Exists(modelFile) && File.Exists(labelsFile))
                return;
 
            Directory.CreateDirectory(dir);
            var wc = new WebClient();
            wc.DownloadFile(url, zipfile);
            ZipFile.ExtractToDirectory(zipfile, dir);
            File.Delete(zipfile);
        }
    }
这里需要注意的是由于需要下载初始Graph和标签,而且是google的站点,所以得使用一些特殊手段。

最终我随便下载了几张图放到bin\Debug\img

 然后运行程序,首先确保bin\Debug\tmp文件夹下有tensorflow_inception_graph.pb及imagenet_comp_graph_label_strings.txt。

总结

我整理了一份关于pytorch、python基础,图像处理opencv\自然语言处理、机器学习、数学基础等资源库,想学习人工智能或者转行到高薪资行业的,大学生都非常实用,无任何套路免费提供,,可以领取的内部资源,人工智能题库,大厂面试题 学习大纲 自学课程大纲还有200G人工智能资料大礼包免费送哦~扫码加V免费领取资料.

TensorFlowSharp入门使用C#编写TensorFlow人工智能应用学习_第1张图片
 

 

你可能感兴趣的:(tensorflow,人工智能,c#,自然语言处理,神经网络)