折线图绘制要求:
任务1:
假设大家在30岁的时候,根据自己的实际情况,统计出来了从11岁到30岁每年交的女(男)朋友的数量如列表a,请绘制出该数据的折线图,以便分析自己每年交女(男)朋友的数量走势
a = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
要求:
y轴表示个数
x轴表示岁数,比如11岁,12岁等
python代码:
import matplotlib.pyplot as plt
a = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
b = range(len(a))
#设置图像分辨率
plt.figure(figsize=(10,8),dpi=200)
#设置字体和负号的代码
plt.rcParams['font.sans-serif']=['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
#绘制曲线图
plt.plot(b,a)
#x坐标轴的刻度标签
xlabels = ["{}岁".format(i) for i in range(len(a))]
#设置x轴上的刻度稀疏程度和刻度字符串
plt.xticks(b[::2],xlabels[::2],rotation=90)
#设置标题,xy轴的lable
plt.xlabel("年龄")
plt.ylabel("女朋友数量")
plt.title("交女(男)折线图")
#设置网格
plt.grid(alpha=0.4)
#保存图片
plt.savefig("./line_plot1.png")
plt.show()
任务二:
假设大家在30岁的时候,根据自己的实际情况,统计出来了你和你同桌各自从11岁到30岁每年交的女(男)朋友的数量如列表a和b,请在一个图中绘制出该数据的折线图,以便比较自己和同桌20年间的差异,同时分析每年交女(男)朋友的数量走势
a = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
b = [1,0,3,1,2,2,3,3,2,1,2,1,1,1,1,1,1,1,1,1]
要求:
y轴表示个数
x轴表示岁数,比如11岁,12岁等
import matplotlib.pyplot as plt
y_1 = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
y_2 = [1,0,3,1,2,2,3,3,2,1,2,1,1,1,1,1,1,1,1,1]
x = range(len(y_1))
#设置图像分辨率
plt.figure(figsize=(10,8),dpi=100)
#设置字体和负号的代码
plt.rcParams['font.sans-serif']=['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
#绘制曲线图
plt.plot(x,y_1, label="小张")
plt.plot(x,y_2, label="小李")
#x坐标轴的刻度标签
xlabels = ["{}岁".format(i) for i in range(len(y_1))]
#设置x轴上的刻度稀疏程度和刻度字符串
plt.xticks(x[::2],xlabels[::2],rotation=90)
#设置网格
plt.grid(linestyle=':')
#设置标题,xy轴的lable
plt.xlabel("年龄")
plt.ylabel("女朋友数量")
plt.title("交女(男)折线图")
#画图例
plt.legend(loc='best')
#保存图片
plt.savefig("./line_plot1.png")
plt.show()
任务:
网站统计了客户收货天数和满意度结果,满意度最高为5分。分析收货天数和满意度直接的相关关系。
a = [6, 2, 8, 6, 8, 7, 5, 2, 3, 2, 1, 7, 3, 2, 9, 2, 3, 5, 8, 10]
b = [1.5, 5, 0.5, 2, 1, 1.3, 1.2, 4.1, 3.5, 4.5, 3.0, 3.5, 5, 0.3, 4.3, 3.8, 0.8, 1.5, 0.1, 0.3]
代码
import matplotlib.pyplot as plt
a = [6, 2, 8, 6, 8, 7, 5, 2, 3, 2, 1, 7, 3, 2, 9, 2, 3, 5, 8, 10]
b = [1.5, 5, 0.5, 2, 1, 1.3, 1.2, 4.1, 3.5, 4.5, 5.0, 3.5, 5, 4.3, 2.3, 3.8, 0.8, 1.5, 0.1, 0.3]
#设置字体和负号的代码
plt.rcParams['font.sans-serif']=['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
#绘图风格
plt.style.use('ggplot')
#图片大小
plt.figure(figsize=(10,8), dpi = 80)
#绘图
plt.scatter(a,b)
#坐标轴
plt.xlabel("收货天数")
plt.ylabel("满意评分")
plt.title("满意评分关于收货天数的散点图",fontsize=26)
plt.show()
任务1:
假设你获取到了2017年内地电影票房前20的电影(列表a)和电影票房数据(列表b),那么如何更加直观的展示该数据?
a = [“战狼2”,“速度与激情8”,“功夫瑜伽”,“西游伏妖篇”,“变形金刚5:最后的骑士”,“摔跤吧!爸爸”,“加勒比海盗5:死无对证”,“金刚:骷髅岛”,“极限特工:终极回归”,“生化危机6:终章”,“乘风破浪”,“神偷奶爸3”,“智取威虎山”,“大闹天竺”,“金刚狼3:殊死一战”,“蜘蛛侠:英雄归来”,“悟空传”,“银河护卫队2”,“情圣”,“新木乃伊”,]
b=[56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23] 单位:亿
纵向条形图:
import matplotlib.pyplot as plt
a = ["战狼2","速度与激情8","功夫瑜伽","西游伏妖篇","变形金刚5:\n最后的骑士","摔跤吧!爸爸","加勒比海盗5:\n死无对证","金刚:骷髅岛","极限特工:\n终极回归","生化危机6:\n终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:\n殊死一战","蜘蛛侠:\n英雄归来","悟空传","银河护卫队2","情圣","新木乃伊",]
b=[56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23]
#设置字体和负号的代码
plt.rcParams['font.sans-serif']=['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
#绘图风格
plt.style.use('ggplot')
#图片大小
plt.figure(figsize=(10,8), dpi = 80)
#横坐标标签
x = range(len(a))
plt.xticks(x, a, rotation=90)
#绘图
plt.bar(range(len(a)),b)
plt.show()
import matplotlib.pyplot as plt
a = ["战狼2","速度与激情8","功夫瑜伽","西游伏妖篇","变形金刚5:\n最后的骑士","摔跤吧!爸爸","加勒比海盗5:\n死无对证","金刚:骷髅岛","极限特工:\n终极回归","生化危机6:\n终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:\n殊死一战","蜘蛛侠:\n英雄归来","悟空传","银河护卫队2","情圣","新木乃伊",]
b=[56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23]
#设置字体和负号的代码
plt.rcParams['font.sans-serif']=['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
#绘图风格
plt.style.use('ggplot')
#图片大小
plt.figure(figsize=(10,8), dpi = 80)
#横坐标标签
y = range(len(a))
plt.yticks(y, a)
#绘图
plt.barh(range(len(a)),b)
plt.show()
任务二:
假设你知道了列表a中电影分别在2017-09-14(b_14), 2017-09-15(b_15), 2017-09-16(b_16)三天的票房,为了展示列表中电影本身的票房以及同其他电影的数据对比情况,应该如何更加直观的呈现该数据?
a = [“猩球崛起3:终极之战”,“敦刻尔克”,“蜘蛛侠:英雄归来”,“战狼2”]
b_16 = [15746,312,4497,319]
b_15 = [12357,156,2045,168]
b_14 = [2358,399,2358,362]
import matplotlib.pyplot as plt
a = ["猩球崛起3:终极之战","敦刻尔克","蜘蛛侠:英雄归来","战狼2"]
b_16 = [15746,312,4497,319]
b_15 = [12357,156,2045,168]
b_14 = [2358,399,2358,362]
#图形参数
barwidth = 0.2
#设置字体和负号的代码
plt.rcParams['font.sans-serif']=['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
#绘图风格
plt.style.use('ggplot')
#图片大小
plt.figure(figsize=(10,8), dpi = 80)
#横坐标标签
x_1 = list(range(len(a)))
x_2 = [i + barwidth for i in range(len(a))]
x_3 = [i + barwidth*2 for i in range(len(a))]
plt.xticks(x_2, a)
plt.bar(x_1, b_14, width=barwidth, label="9月14日")
plt.bar(x_2, b_15, width=barwidth, label="9月15日")
plt.bar(x_3, b_16, width=barwidth, label="9月16日")
plt.show()
任务:
假设你获取了250部电影的时长(列表a中),希望统计出这些电影时长的分布状态(比如时长为100分钟到120分钟电影的数量,出现的频率)等信息,你应该如何呈现这些数据?
a=[131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111,78, 132, 124, 113, 150, 110, 117, 86, 95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123, 86, 101, 99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140, 83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144, 83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137, 92,121, 112, 146, 97, 137, 105, 98, 117, 112, 81, 97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112, 83, 94, 146, 133, 101,131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150]
import matplotlib.pyplot as plt
a=[131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142,
127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111,78, 132,
124, 113, 150, 110, 117, 86, 95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123, 86,
101, 99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116,
108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,
156, 106, 117, 127, 144, 139, 139, 119, 140, 83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112,
118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137,
116, 103, 144, 83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111,
109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117,
106, 114, 121, 114, 133, 137, 92,121, 112, 146, 97, 137, 105, 98, 117, 112, 81, 97, 139, 113,134,
106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112, 83,
94, 146, 133, 101,131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150]
#计算组数
d = 6 #组距
num_bins = (max(a)-min(a)) // d
#设置字体和负号的代码
plt.rcParams['font.sans-serif']=['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
#绘图风格
plt.style.use('ggplot')
#设置x轴的刻度
plt.xticks(range(min(a),max(a)+d,d))
#绘图
plt.hist(a,num_bins)
plt.show()