腾讯云GPU渲染型应用场景,腾讯云GPU实例类型,快速操作入门指南

腾讯云GPU云服务器产品概述和产品优势,GPU计算型应用场景

腾讯云GPU云服务器 渲染型应用场景

腾讯云推出 GPU 渲染型 GA2 实例,搭配 AMD 最新 S7150 系列 GPU,单 GPU 核心具有2048个 处理器核心,单 GPU 最高可达 3.77 TFLOPS 单精度浮点运算,建议用于非线性编辑、视频编解码、图形加速可视化和 3D 设计等 GPU 渲染场景。

非线性编辑场景

非线性剪辑是电影和电视后期制作中的一种现代剪接方式。有大量的图形图像处理负载,需要可视化 GPU 处理图片及可视化设计,同时需要大量计算、内存或存储来存储及处理媒资数据。将媒资数据存储在云端,网络剪辑环境下可实现项目共享,多人本地终端同时工作,分别进行剪辑、字幕、特技、调色、包装。
腾讯云GPU渲染型应用场景,腾讯云GPU实例类型,快速操作入门指南_第1张图片

渲染场景

渲染是用软件从模型生成图像的过程,应用在视频、模拟和电影电视制作等广泛领域。渲染业务场景需要 GPU 显卡实现图形加速及实时渲染,同时需要大量计算、内存或存储。高性能计算能力及图形渲染能力,实现在线图形渲染处理,大大缩短制作周期,提升整体效率。
腾讯云GPU渲染型应用场景,腾讯云GPU实例类型,快速操作入门指南_第2张图片

远程图形工作站

远程图形工作站是一种服务器和客户端采用相互分离的形式,通过专用网络连接到主机来进行日常的工作的工作站。主机服务器一般集中部署在信息中心机房,通过 GPU 显卡处理图形工作负载,客户端的终端通过连接键盘、鼠标、显示器通过专用网络连接到主机来进行日常的工作。
腾讯云GPU渲染型应用场景,腾讯云GPU实例类型,快速操作入门指南_第3张图片

腾讯云GPU云服务器 使用须知

GPU 云服务器作为 CVM 云服务器的一类特殊实例,购买、 操作、维护等方式与 CVM 云服务器一致,详细说明参考 云服务器文档。

为了更好的使用 GPU 云服务器,请仔细阅读并关注以下使用注意事项:

1. 备份数据
GPU 云服务器提供强大的计算能力。GN2,GN8 实例可选择搭载本地 SSD 硬盘,但为避免极端情况下的数据丢失,请务必定期备份数据,以保证数据的安全性。
为保证数据更加安全可靠,也可以单独购买弹性云盘并挂载。

2. 及时续费
GPU 云服务器到期前7天开始,用户会收到到期提醒,如需继续使用请及时续费。否则,到期时实例会被关机断网并进入回收站,请务必确保在服务到期前及时续费或备份数据。

3. 外接设备
GPU 云服务器暂不支持直接加载外接硬件设备,如硬件加密狗,U 盘,外接硬盘,银行 U key 等。

4. 配置升级
GPU 云服务器暂不支持配置升降级。

5. 禁止说明
禁止使用 GPU 云服务器做流量穿透服务,最高处以关停并锁定实例的处罚并清退处理。
禁止使用 GPU 云服务器针对淘宝等电商网站从事刷单、刷销量、刷广告等虚假网站交易的网络行为。

腾讯云GPU云服务器实例类型

> AMD 系列实例

实例概述
AMD 系列 GPU 实例 GA2 适用于 GPU 传统图形图像处理(3D 渲染)应用场景。腾讯云以和 云服务器 CVM 一致的管理方式,提供快速、稳定、弹性的计算服务。

适用场景
适用于高性能图形处理,3D 渲染。例如:

非线性编辑
云游戏
图形工作站
云桌面等
硬件规格
CPU: 高频 Intel Xeon E5-2680 (Broadwell) 。
GPU: AMD FirePro™ S7150。
内存: DDR4 。
存储: 系统盘与数据盘都为 CBS 云硬盘。如需扩容可 购买弹性云盘 进行挂载。
网络: 默认网络增强, 无额外收费。
GA2 实例提供以下配置:

型号    GPU
(AMD S7150)    vCPU    内存
(DDR4)    数据盘
GA2.LARGE12     1/4 颗     6 核     12 GB     云硬盘
支持范围
支持 包年包月 和 按量计费 。
支持在基础网络和 私有网络 中启动。
支持 负载均衡 等的业务对接,不增加额外的管理和运维成本,内网流量免费。

> NVIDIA 系列实例

NVIDIA 系列 GPU 实例 GN* 能够提供强大的计算能力,从容应对高实时、高并发的海量计算场景。不仅适用于深度学习、科学计算等 GPU 通用计算场景,也适用于图形图像处理(3D 渲染,视频编解码)场景。腾讯云 GPU 云服务器以和 云服务器 CVM 一致的管理方式,提供快速、稳定、弹性的计算服务。

NVIDIA 系列实例总览

NVIDIA 系列实例包括计算型和渲染型两类。其中:

  • 渲染型:适用于 3D 渲染、视频编解码、CAD 等。
  • 计算型:适用于深度学习、科学计算、CAE 等。

GPU 云服务器 NVIDIA 系列提供以下实例:

类型 实例 GPU 类型 可用镜像 可用区域
计算型 GN10X
GN10Xp
Tesla V100 NVLink 32G
  • CentOS 7.2 及以上
  • Ubuntu 14.04 及以上
  • Windows Server 2012 及以上
  • GN10X:广州、上海、南京、北京、成都、重庆、新加坡、硅谷、法兰克福、孟买
  • GN10Xp:广州、上海、南京、北京、成都、重庆、香港、法兰克福
vGPU - Tesla V100 NVLink 32G
  • CentOS 7.6 64位 GRID91
  • Ubuntu Server 18.04.1 64位 GRID91
  • GN10X:广州、上海、南京、北京、成都、重庆
  • GN10Xp:广州、上海、南京、北京、成都、重庆、香港
GN8 Tesla P40
  • CentOS 7.2 及以上
  • Ubuntu 14.04 及以上
  • Windows Server 2012 及以上
广州、上海、北京、成都、重庆、香港、硅谷
GN7 Tesla T4 广州、上海、南京、北京、成都、重庆、香港、新加坡、硅谷、孟买、弗吉尼亚、法兰克福
vGPU - Tesla T4
  • CentOS 7.6 64位 GRID91
  • Ubuntu Server 18.04.1 64位 GRID91
广州、上海、南京、北京、成都、重庆、香港、硅谷
GN6
GN6S
Tesla P4
  • CentOS 7.2 及以上
  • Ubuntu 14.04 及以上
  • Windows Server 2012 及以上
  • GN6:成都
  • GN6S:广州、上海、北京
GN2 Tesla M40 广州、北京、上海
渲染型 GN7vw Tesla T4
  • CentOS 7.6 64位 GRID91
  • Ubuntu Server 18.04.1 64位 GRID91
  • Windows Server 2016数据中心版 64位中文版 GRID93
北京、上海、广州、南京、成都、重庆、香港、新加坡、孟买、硅谷、弗吉尼亚、法兰克福

说明:

可用区域:精确到城市级,细分区域详见下文中的实例配置信息。

NVIDIA 系列选型推荐

腾讯云提供了类型丰富的 GPU 计算实例,可满足不同业务应用场景的需求。请参考下表,并结合实际需求选择合适的计算实例。

GPU 云服务器 NVIDIA 系列选型推荐如下表,其中  为支持, 为推荐。

功能\实例 GN2 GN6/GN6S GN7 GN8 GN10X/GN10Xp GN7vw
图形图像处理 -
视频编解码
深度学习训练 -
深度学习推理 -
科学计算 - - - -

说明:

GN2 视频编解码支持 H.264,不支持 H.265。详情请参见 视频编码和解码 GPU 支持列表。

图形图像处理

推荐使用 GN7vw,免除了 vDWS License 申请及搭建服务器步骤,是图形图像处理应用场景的首选。目前 GN7vw 处于限量购买阶段,如需使用,请前往 申请 页面。

NVIDIA GN* 系列其他实例(GN2 除外)可以通过安装 GRID Driver 的方式来支持图形图像处理,但是需要额外购买 License,详情请参见安装 NVIDIA GRID 驱动。

视频编解码

推荐使用 GN7 实例。GN7 采用 T4 GPU,性能好且单路视频转码成本最低,适用于视频编解码的产品。

深度学习训练

推荐使用 GN8/GN10X/GN10Xp 实例。 GN8/GN10X 实例采用 P40、V100 中高端 GPU,具有强大的单精度浮点运算能力,并具备较大的 GPU 板载内存,是深度学习训练的首选。

深度学习推理

推荐使用 GN6/GN6S/GN7/GN8 实例。GN6/GN6S/GN7/GN8 实例采用 P4、T4、P40 GPU,具备 INT8 计算能力,性价比高 ,适合大规模部署。

科学计算

推荐使用 GN10X/GN10Xp 实例。GN10X/GN10Xp 实例采用 V100 GPU,具有强大的双精度浮点运算能力,可为科学与工程计算相关的应用软件提供最好的加速能力。

注意:

 

  • 以上推荐用途仅供参考,请根据实际需要进行选择。
  • NVIDIA 系列 GPU 实例如用作通用计算,则需安装 Tesla Driver + CUDA,安装方法请参考安装 NVIDIA Tesla 驱动指引 和 安装 CUDA 驱动指引。
  • NVIDIA 系列 GPU 实例如用作 3D 图形渲染任务(高性能图形处理,视频编解码等),则需安装 GRID Driver 和配置 License Server,安装方法请参考安装 NVIDIA GRID 驱动。

支持范围

  • 支持 包年包月 和 按量计费。
  • 支持在私有网络中启动。
  • 支持与负载均衡 等产品的业务对接,不增加额外的管理和运维成本,内网流量免费。

计算型 GN10X/GN10Xp

NVIDIA 实例 GN10X/GN10Xp 不仅适用于深度学习、科学计算等 GPU 通用计算场景,也适用于图形图像处理(3D 渲染,视频编解码)场景。

适用场景

GN10X/GN10Xp 具有强大的双精度浮点运算能力 ,适用于如下场景:

  • 大规模深度学习训练,推理和科学计算场景。例如:
    • 深度学习
    • 高性能数据库
    • 计算流体动力学
    • 计算金融
    • 地震分析
    • 分子建模
    • 基因组学及其他
  • 图形图像处理场景。例如:
    • 图形图像处理
    • 视频编解码
    • 图形数据库

硬件规格

  • CPU: GN10X 配置 Intel® Xeon® Gold 6133 CPU,主频2.5GHz。GN10Xp 配置 Intel® Xeon® Platinum 8255C CPU,主频2.5GHz。
  • GPU: NVIDIA® Tesla® V100 NVLink 32GB(15.7TFLOPS 单精度浮点计算,7.8TFLOPS 双精度浮点计算,125TFLOPS Tensor Core 深度学习加速,300GB/s NVLink)。
  • 内存: DDR4 ,内存带宽达2666MT/s。
  • 存储: 可选择云硬盘类型,如需 扩容可新建弹性云盘进行挂载。
  • 网络: 默认网络优化,实例网络性能与规格对应。公网网络可按需配置。

GN10X/GN10Xp 实例提供以下配置:

型号 GPU
(NVIDIA
Tesla V100 NVLink 32G)
GPU 显存
(HBM2)
vCPU 内存
(DDR4)
内网带宽 网络收发包 队列数 可用区
GN10X.2XLARGE40 1颗 1 * 32GB 8核 40GB 4Gbps 80万PPS 2 广州三、四区,上海二、三区,南京一区,北京四、五区,成都一区,重庆一区,新加坡一区,硅谷二区,法兰克福一区,孟买二区
GN10X.9XLARGE160 4颗 4 * 32GB 36核 160GB 13Gbps 250万PPS 9
GN10X.18XLARGE320 8颗 8 * 32GB 72核 320GB 25Gbps 490万PPS 16
GN10X.4XLARGE80 2颗 2 * 32GB 18核 80GB 7Gbps 150万PPS 4 广州三、四区,南京一区,成都一区,重庆一区
GN10X.MEDIUM10 1/4颗 8GB vGPU 2核 10GB 1Gbps 20万PPS 2 -
GN10X.LARGE20 1/2颗 16GB vGPU 4核 20GB 2Gbps 40万PPS 2
GN10Xp.2XLARGE40 1颗 1 * 32GB 10核 40GB 4Gbps 80万PPS 10 广州三、四区,上海二区,南京一区,北京五区,成都一区,重庆一区,香港二区,法兰克福一区
GN10Xp.5XLARGE80 2颗 2 * 32GB 20核 80GB 7Gbps 150万PPS 16
GN10Xp.10XLARGE160 4颗 4 * 32GB 40核 160GB 13Gbps 250万PPS 16
GN10Xp.20XLARGE320 8颗 8 * 32GB 80核 320GB 25Gbps 490万PPS 16

说明:

vGPU:GN10X 实例簇提供支持 vGPU 的实例类型。目前 vGPU 类型处于限量购买阶段,如需使用,请前往申请页面。vGPU 的类型为 vComputeServer,仅支持 CUDA 计算 API。

计算型 GN8

NVIDIA 实例 GN8 不仅适用于深度学习等 GPU 通用计算场景,也适用于图形图像处理(3D 渲染,视频编解码)场景。

适用场景

适用于如下场景:

  • 深度学习的推理和训练场景。例如:
    • 大吞吐量的 AI 推理
    • 深度学习
  • 图形图像处理场景。例如:
    • 图形图像处理
    • 视频编解码
    • 图形数据库

硬件规格

  • CPU: Intel® Xeon® E5-2680 v4 CPU,主频2.4GHz。
  • GPU: NVIDIA® Tesla® P40(12TFLOPS 单精度浮点计算,47INT8 TOPS)。
  • 内存: DDR4 ,内存带宽达2666MT/s。
  • 存储: 可选择云硬盘类型,如需 扩容可新建弹性云盘进行挂载。
  • 网络: 默认网络优化,实例网络性能与规格对应。公网网络可按需配置。

GN8实例提供以下配置:

型号 GPU
(NVIDIA
Tesla P40)
GPU 显存
(GDDR5)
vCPU 内存
(DDR4)
内网带宽 网络收发包 队列数 可用区
GN8.LARGE56 1颗 24GB 6核 56GB 1.5Gbps 45万PPS 6 香港二区,广州三区,上海三区,北京二、四区,成都一区,重庆一区,硅谷一区
GN8.3XLARGE112 2颗 48GB 14核 112GB 2.5Gbps 50万PPS 8
GN8.7XLARGE224 4颗 96GB 28核 224GB 5Gbps 70万PPS 8
GN8.14XLARGE448 8颗 192GB 56核 448GB 10Gbps 70万PPS 8

计算型 GN7

NVIDIA 实例 GN7 不仅适用于深度学习等 GPU 通用计算场景,也适用于图形图像处理(3D 渲染,视频编解码)场景。

适用场景

性价比高 ,适用于如下场景:

  • 深度学习的推理场景和小规模训练场景。例如:
    • 大规模部署的 AI 推理
    • 深度学习小规模训练
  • 图形图像处理场景。例如:
    • 图形图像处理
    • 视频编解码
    • 图形数据库

硬件规格

  • CPU: Intel® Xeon® Platinum 8255C CPU,主频 2.5 GHz。
  • GPU: NVIDIA® Tesla® T4(8.1 TFLOPS 单精度浮点计算,130 INT8 TOPS,260 INT4 TOPS)。
  • 内存: DDR4 ,内存带宽达2666MT/s。
  • 存储: 可选择云硬盘类型,如需 扩容可新建弹性云盘进行挂载。
  • 网络: 默认网络优化,实例网络性能与规格对应。公网网络可按需配置。

GN7实例提供以下配置:

型号 GPU
(NVIDIA
Tesla T4)
GPU 显存
(GDDR6)
vCPU 内存
(DDR4)
内网带宽 网络收发包 队列数 可用区
GN7.LARGE20 1/4颗 4GB vGPU 4核 20GB 2Gbps 50万PPS 4 广州三、四区,上海二、四区,南京一、二区,北京三,五区,成都一区,重庆一区,硅谷二区
GN7.2XLARGE40 1/2颗 8GB vGPU 10核 40GB 4Gbps 70万PPS 10
GN7.2XLARGE32 1颗 1 * 16GB 8核 32GB 7Gbps 60万PPS 8 广州三、四区,上海二、四区,南京一、二区,北京三、五区,成都一区,重庆一区,新加坡一区,硅谷二区,香港二区,孟买二区,弗吉尼亚二区,法兰克福一区
GN7.5XLARGE80 1颗 1 * 16GB 20核 80GB 7Gbps 140万PPS 16
GN7.8XLARGE128 1 颗 1 * 16GB 32核 128GB 7Gbps 240万PPS 16
GN7.10XLARGE160 2颗 2 * 16GB 40核 160GB 13Gbps 280万PPS 16
GN7.20XLARGE320 4颗 4 * 16GB 80核 320GB 25Gbps 560万PPS 16

说明:

vGPU:GN7 实例簇支持 vGPU 的实例类型。vGPU 的类型为 vComputeServer,只支持 CUDA 计算 API。

计算型 GN6/GN6S

NVIDIA 实例 GN6/GN6S 不仅适用于深度学习等 GPU 通用计算场景,也适用于图形图像处理(3D 渲染,视频编解码)场景。

适用场景

性价比高 ,适用于如下场景:

  • 深度学习的推理场景和小规模训练场景。例如:
    • 大规模部署的 AI 推理
    • 深度学习小规模训练
  • 图形图像处理场景。例如:
    • 图形图像处理
    • 视频编解码
    • 图形数据库

硬件规格

  • CPU: GN6 配置 Intel® Xeon® E5-2680 v4 CPU,主频2.4GHz。GN6S 配置 Intel® Xeon® Silver 4110 CPU,主频2.1GHz。
  • GPU: NVIDIA® Tesla® P4(5.5TFLOPS 单精度浮点计算,22INT8 TOPS)。
  • 内存: DDR4 ,内存带宽达2666MT/s。
  • 存储: 可选择云硬盘类型,如需 扩容 可新建弹性云盘进行挂载。
  • 网络: 默认网络优化,实例网络性能与规格对应。公网网络可按需配置。

GN6/GN6S实例提供以下配置:

型号 GPU
(NVIDIA
Tesla P4)
GPU 显存
(GDDR5)
vCPU 内存
(DDR4)
内网带宽 网络收发包 队列数 可用区
GN6.7XLARGE48 1颗 8GB 28核 48GB 5Gbps 120万PPS 16 成都一区
GN6.14XLARGE96 2颗 16GB 56核 96GB 10Gbps 120万PPS 16
GN6S.LARGE20 1颗 8GB 4核 20GB 7Gbps 50万PPS 2 广州三区,上海二、三、四区,北京四、五区
GN6S.2XLARGE40 2颗 16GB 8核 40GB 13Gbps 80万PPS 2

计算型 GN2

NVIDIA 实例 GN2 适用于深度学习、科学计算等 GPU 通用计算场景,也部分适用于图形图像处理(视频编解码)场景。

适用场景

适用于深度学习训练,推理和科学计算场景。例如:

  • 深度学习
  • 高性能数据库
  • 计算流体动力学
  • 计算金融
  • 地震分析
  • 分子建模
  • 基因组学及其他

部分适用于图形图像处理。例如,视频编解码,支持 H.264,不支持 H.265。详情请参见视频编码和解码 GPU 支持列表。

硬件规格

  • CPU: Intel® Xeon® E5-2680 v4 (Broadwell),主频2.4GHz 。
  • GPU: NVIDIA® Tesla® M40(GPU Boost加速下单精度浮点计算7TFLOPS,0.2TFLOPS 双精度浮点计算)。
  • 内存: DDR4 ,内存带宽达2666MT/s。
  • 存储: 本地 SSD 硬盘,本机型暂不支持购买云硬盘。
  • 网络: 默认网络优化,实例网络性能与规格对应。公网网络可按需配置。

GN2实例提供以下配置:

型号 GPU
(NVIDIA
Tesla M40)
GPU 显存
(GDDR5)
vCPU 内存
(DDR4)
内网带宽 网络收发包 队列数 可用区
GN2.7XLARGE48 1颗 24GB 28核 48GB 5Gbps 40万PPS 8 -
GN2.14XLARGE96 2颗 48GB 56核 96GB 10Gbps 70万PPS 8

渲染型 GN7vw

NVIDIA 实例 GN7vw 是在 GN7 基础上配置 vDWS License 服务器并安装 GRID driver 的渲染型实例,适用于图形图像处理(3D 渲染,视频编解码)场景。使用该实例,您可免除手动配置 GPU 图形图像处理基础环境。

注意:

GPU 渲染型 GN7vw 现处于限量购买阶段,如需使用,请前往申请页面。

适用场景

适用于图形图像处理。例如:

  • 图形图像处理
  • 视频编解码
  • 图形数据库

硬件规格

  • CPU: Intel® Xeon® Platinum 8255C CPU,主频 2.5 GHz。
  • GPU: NVIDIA® Tesla® T4(8.1 TFLOPS 单精度浮点计算,130 INT8 TOPS,260 INT4 TOPS)。
  • 内存: DDR4 ,内存带宽达2666MT/s。
  • 存储:可选择 云硬盘类型,如需 扩容 可新建弹性云盘进行挂载。
  • 网络: 默认网络优化,实例网络性能与规格对应。公网网络 可按需配置。

GN7vw实例提供以下配置:

型号 GPU
(NVIDIA
Tesla T4)
GPU 显存
(GDDR6)
vCPU 内存
(DDR4)
内网带宽 网络收发包 队列数 可用区
GN7vw.LARGE16 1/4颗 4GB vGPU 4核 16GB 2Gbps 50万PPS 4 广州三、四区,上海二、四、五区,南京一、二区,北京五区,成都一区,重庆一区,香港二区,新加坡一区,孟买二区,硅谷二区,弗吉尼亚二区,法兰克福一区
GN7vw.2XLARGE32 1/2颗 8GB vGPU 8核 32GB 4Gbps 80万PPS 8
GN7vw.4XLARGE64 1颗 1 * 16GB 16核 64GB 7Gbps 150万PPS 16

说明:

vGPU:GN7、GN7vw 实例簇提供支持 vGPU 的实例类型。其中 GN7vw vGPU 的类型为 vDWS,仅支持 DirectX 和 OpenGL 等图形 API。

你可能感兴趣的:(腾讯云知识分享,腾讯云,gpu,云服务器,服务器,云存储)