Python爬虫高手——scrapy框架

文章目录

  • scrapy框架⭐⭐⭐
    • 1 环境的安装:
    • 2 创建工程终端
    • 3 数据解析
    • 4 数据持久化存储
      • 4.1 基于终端指令
      • 4.2 基于管道存储
        • 例子1,管道存储到txt文件
        • 例子2:管道存储到数据库
    • 5 全站数据爬取
      • 爬取校花网30页的图片名称
    • 6 五大核心组件
    • 7 请求传参,深度爬取
      • 爬取阿里校园招聘的岗位名称,岗位描述
    • 8 图片爬取
      • 爬取站长素材的图片
  • 9 中间件
    • 拦截请求,更改代理ip
    • 爬取网易新闻
  • 10 全站数据爬取利器CrawlSpider
    • 全站爬取糗图百科

本文是 Python爬虫高手爬爬爬的第八章内容,由于篇幅庞大自成一篇
之前知识点移步->…/ Python爬虫高手爬爬爬

scrapy框架⭐⭐⭐

什么是scrapy?爬虫中封装好的一个明星框架。功能:高性能的持久化存储,异步的数据下载,高性能的数据解析,分布式。

1 环境的安装:

  1. mac or linux:pip install scrapy

  2. windows:
    - pip install wheel
    - 下载twisted,下载地址为http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
    - 安装twisted:pip install Twisted‑17.1.0‑cp36‑cp36m‑win_amd64.whl
    - pip install pywin32
    - pip install scrapy
    测试:在终端里录入scrapy指令,没有报错即表示安装成功!记得要在相对应虚拟环境里安装

2 创建工程终端

scrapy startproject xxxPro
cd xxxPro
在spiders子目录中创建一个爬虫文件
scrapy genspider spiderName www.xxx.com
执行爬虫文件
scrapy crawl spiderName

3 数据解析

settings.py设置ua伪装和关闭遵守robots协议

# Crawl responsibly by identifying yourself (and your website) on the user-agent
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.183 Safari/537.36 Edg/86.0.622.63'

# Obey robots.txt rules
ROBOTSTXT_OBEY = False
# 只输出错误日志
LOG_LEVEL = 'ERROR'

例子爬虫文件spiderone.py

import scrapy
class SpideroneSpider(scrapy.Spider):
    #爬虫文件的名称:就是爬虫源文件的一个唯一标识
    name = 'spiderone'
    #允许的域名:用来限定start_urls列表中哪些url可以进行请求发送
    #allowed_domains = ['www.baidu.com']

    #起始的url列表:该列表中存放的url会被scrapy自动进行请求的发送
    start_urls = ['https://www.biedoul.com/wenzi/']

    #用作于数据解析:response参数表示的就是请求成功后对应的响应对象
    def parse(self, response):
          #解析:作者的名称+段子内容

        div_list = response.xpath('/html/body/div[4]/div[1]/div[1]/dl')
        # print(div_list)
        all_data = [] #存储所有解析到的数据
        for div in div_list:
            # print(div)
            #xpath返回的是列表,但是列表元素一定是Selector类型的对象
            #extract可以将Selector对象中data参数存储的字符串提取出来
            author = div.xpath('./span/dd/a/strong/text()')[0].extract()
            # author = div.xpath('./span/dd/a/strong/text()').extract_first()
            #列表调用了extract之后,则表示将列表中每一个Selector对象中data对应的字符串提取了出来
            content = div.xpath('./dd//text()').extract()#有br换行用//取所有内容
            content = ''.join(content)#列表转字符串
            print('author:',author)
            print('content:',content)

4 数据持久化存储

4.1 基于终端指令

  • 要求:只可以将parse方法的返回值存储到本地的文本文件中
  • 注意:持久化存储对应的文本文件的类型只可以为:‘json’, ‘jsonlines’, ‘jl’, ‘csv’, ‘xml’, ‘marshal’, 'pickle
  • 指令:scrapy crawl xxx -o filePath
  • 好处:简介高效便捷
  • 缺点:局限性比较强(数据只可以存储到指定后缀的文本文件中)

在8.3的基础上修改然后终端scrapy crawl spiderone -o ./22222.csv保存数据

import scrapy
class SpideroneSpider(scrapy.Spider):
    name = 'spiderone'
    #allowed_domains = ['www.baidu.com']
    start_urls = ['https://www.biedoul.com/wenzi/']
    def parse(self, response):
        div_list = response.xpath('/html/body/div[4]/div[1]/div[1]/dl')
        all_data = [] #存储所有解析到的数据
        for div in div_list:
            author = div.xpath('./span/dd/a/strong/text()')[0].extract()
            content = div.xpath('./dd//text()').extract()#//取所有内容
            content = ''.join(content)
             # 封装返回值
            dic = {
     
                        'author':author,
                        'content':content
                    }
            all_data.append(dic)
        return all_data

4.2 基于管道存储

  • 编码流程:
  1. 数据解析
  2. 在item类中定义相关的属性
  3. 将解析的数据封装存储到item类型的对象
  4. 将item类型的对象提交给管道进行持久化存储的操作
  5. 在管道类的process_item中要将其接受到的item对象中存储的数据进行持久化存储操作
  6. 在配置文件中开启管道
    好处:通用性强。

例子1,管道存储到txt文件

在上述数据解析的基础上,提交items给管道

import scrapy
from lesson8_scrapy.testpro.testpro.items import TestproItem

class SpideroneSpider(scrapy.Spider):
    name = 'spiderone'
    #allowed_domains = ['www.baidu.com']
    start_urls = ['https://www.biedoul.com/wenzi/']
    def parse(self, response):
        div_list = response.xpath('/html/body/div[4]/div[1]/div[1]/dl')
        all_data = [] #存储所有解析到的数据
        for div in div_list:
            author = div.xpath('./span/dd/a/strong/text()')[0].extract()
            content = div.xpath('./dd//text()').extract()#//取所有内容
            content = ''.join(content)
            item = TestproItem()
            item['author'] = author
            item['content'] = content
            yield item  # 将item提交给了管道

items.py中定义属性,类似于C++中结构体的意思

import scrapy
class TestproItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    author = scrapy.Field()
    content = scrapy.Field()
    pass

pipelines.py使用items,进行存储操作

#存到txt文件
class TestproPipeline:
    fp = None

    # 重写父类的一个方法:该方法只在开始爬虫的时候被调用一次
    def open_spider(self, spider):
        print('开始爬虫......')
        self.fp = open('./xiaohua.txt', 'w', encoding='utf-8')
    # 专门用来处理item类型对象
    # 该方法可以接收爬虫文件提交过来的item对象
    # 该方法没接收到一个item就会被调用一次
    def process_item(self, item, spider):
        author = item['author']
        content = item['content']

        self.fp.write(author + ':' + content + '\n')

        return item  # 就会传递给下一个即将被执行的管道类
    def close_spider(self, spider):
        print('结束爬虫!')
        self.fp.close()

settings.py 开启管道权限,管道类和优先级,越小优先级越高

# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
     
   'testpro.pipelines.TestproPipeline': 300,
}

终端运行就可以scrapy crawl spiderone

例子2:管道存储到数据库

在pipelines.py声明一个新的管道类,并在settings里开启管道类设置优先级。
管道类,注意上一个管道类中process_item方法要进行return item 传递给下个优先级管道类!!!!

class TestproPipeline:
    fp = None

    # 重写父类的一个方法:该方法只在开始爬虫的时候被调用一次
    def open_spider(self, spider):
        print('开始爬虫......')
        self.fp = open('./xiaohua.txt', 'w', encoding='utf-8')
    # 专门用来处理item类型对象
    # 该方法可以接收爬虫文件提交过来的item对象
    # 该方法没接收到一个item就会被调用一次
    def process_item(self, item, spider):
        author = item['author']
        content = item['content']

        self.fp.write('主题' + ':' + author + '\n')
        self.fp.write('内容' + ':' + content + '\n')

        return item  # 就会传递给下一个即将被执行的管道类
    def close_spider(self, spider):
        print('结束爬虫!')
        self.fp.close()

class mysqlPileLine(object):
    conn = None
    cursor = None
    def open_spider(self,spider):
        self.conn = pymysql.Connect(host='10.1.218.**',port=3306,user='root',password='***',db='test',charset='utf8')
    def process_item(self,item,spider):
        self.cursor = self.conn.cursor()
        try:
            self.cursor.execute('insert into xiaohua values("%s","%s")'%(item["author"],item["content"]))
            self.conn.commit()
        except Exception as e:
            print(e)
            self.conn.rollback()

        return item
    def close_spider(self,spider):
        self.cursor.close()
        self.conn.close()

声明管道类:

ITEM_PIPELINES = {
     
   'testpro.pipelines.TestproPipeline': 300,
   'testpro.pipelines.mysqlPileLine': 301,
}

数据库结果
Python爬虫高手——scrapy框架_第1张图片

5 全站数据爬取

就是将网站中某板块下的全部页码对应的页面数据进行爬取,比如分页
实现方式:

  • 将所有页面的url添加到start_urls列表(不推荐)
  • 自行手动进行请求发送(推荐):手动请求发送:

yield scrapy.Request(url,callback)
callback专门用做于数据解析

爬取校花网30页的图片名称

import scrapy
class AlldatagirlSpider(scrapy.Spider):
    name = 'alldatagirl'
    # allowed_domains = ['www.xxx.com']
    start_urls = ['http://www.521609.com/daxuemeinv/']

    url = 'http://www.521609.com/daxuemeinv/list8%d.html'
    page_num = 1
    count = 1
    def parse(self, response):
        div_list = response.xpath('//*[@id="content"]/div[2]/div[2]/ul/li')
        for div in div_list:
            ##获取不到提示 IndexError: list index out of range ,存放位置不一样
            name = div.xpath('./a[2]/text() | ./a[2]/b/text()')[0].extract()
            print(self.count,':','name:',name)
            self.count+=1
        if self.page_num<=30:
            new_url = format(self.url%self.page_num)
            self.page_num+=1
            yield scrapy.Request(url=new_url,callback=self.parse)

6 五大核心组件

  • 引擎(Scrapy)
    用来处理整个系统的数据流处理, 触发事务(框架核心)

  • 调度器(Scheduler)
    用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址

  • 下载器(Downloader)
    用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)

  • 爬虫(Spiders)
    爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面

  • 项目管道(Pipeline)
    负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。

7 请求传参,深度爬取

如果爬取解析的数据不在同一张页面中。详情页需要点击。

爬取阿里校园招聘的岗位名称,岗位描述

import scrapy
from ..items import BossproItem

class BossSpider(scrapy.Spider):
    name = 'boss'
    # allowed_domains = ['www.xxx.com']
    start_urls = ['https://campus.alibaba.com/positionList.htm']

    # url = 'https://www.zhipin.com/c100010000-p100101/?page={page1}&ka=page-{page2}'
    # page_num = 2
    # 回调函数接受item
    def parse_detail(self, response):
        item = response.meta['item']
        job_desc = response.xpath('//*[@id="J-jobs"]/div[1]/dl//text()').extract()
        job_desc = ''.join(job_desc)
        # print(job_desc)
        item['job_desc'] = job_desc
        yield item

    # 解析首页中的岗位名称*[@id="s_position_list"]/ul/li[5]/div[1]/div[1]/div[1]/a/h3
    #//*[@id="s_position_list"]  //*[@id="s_position_list"]/ul
    def parse(self, response):
        li_list = response.xpath('//*[@id="J-filter-target"]/tbody/tr')
        print(li_list)
        for li in li_list:
            item = BossproItem()
            job_name = li.xpath('./th/a/text()').extract_first()
            item['job_name'] = job_name
            print(job_name)
            detail_url = li.xpath('./th/a/@href').extract_first()
            print(detail_url)
            # 对详情页发请求获取详情页的页面源码数据
            # 手动请求的发送
            # 请求传参:meta={},可以将meta字典传递给请求对应的回调函数
            yield scrapy.Request(detail_url, callback=self.parse_detail, meta={
     'item': item})
        #
        # 分页操作
        # if self.page_num <= 5:
        #     new_url = self.url.format(page1=self.page_num,page2=self.page_num)
        #     print(new_url)
        #     self.page_num += 1
        #     print(self.page_num)
        #
        #     yield scrapy.Request(new_url, callback=self.parse)

8 图片爬取

基于scrapy爬取字符串类型的数据和爬取图片类型的数据区别?

  • 字符串:只需要基于xpath进行解析且提交管道进行持久化存储
  • 图片:xpath解析出图片src的属性值。单独的对图片地址发起请求获取图片二进制类型的数据

ImagesPipeline:
只需要将img的src的属性值进行解析,提交到管道,管道就会对图片的src进行请求发送获取图片的二进制类型的数据,且还会帮我们进行持久化存储。

使用流程:⭐

  • 1.数据解析(图片的地址)
  • 2.将存储图片地址的item提交到制定的管道类
  • 3.在管道文件中自定制一个基于ImagesPipeLine的一个管道类
get_media_request
file_path
item_completed
  • 4.在配置文件中:
    - 指定图片存储的目录IMAGES_STORE = './imgs_bobo'
    - 指定开启的管道:自定制的管道类

爬取站长素材的图片

item类

class ImgsproItem(scrapy.Item):
    # define the fields for your item here like:
    src = scrapy.Field()
    # pass

ImagesPipeLine的一个管道类:

from scrapy.pipelines.images import ImagesPipeline
import scrapy
class imgsPileLine(ImagesPipeline):

    #就是可以根据图片地址进行图片数据的请求
    def get_media_requests(self, item, info):

        yield scrapy.Request(item['src'])

    #指定图片存储的路径
    def file_path(self, request, response=None, info=None):
        imgName = request.url.split('/')[-1]
        return imgName

    def item_completed(self, results, item, info):
        return item #返回给下一个即将被执行的管道类

数据解析文件:注意伪属性的加载,有的只有显示页面才会有真实的src

import scrapy
from ..items import ImgsproItem
class ImagesSpider(scrapy.Spider):
    name = 'images'
    # allowed_domains = ['www.xxx.com']
    start_urls = ['http://sc.chinaz.com/tupian/']

    def parse(self, response):
        div_list = response.xpath('//div[@id="container"]/div')
        for div in div_list:
            #注意:使用伪属性
            src = div.xpath('./div/a/img/@src2').extract_first()
            src = 'https:'+''.join(src)
            print(src)
            item = ImgsproItem()
            item['src'] = src

            yield item

settings中设置存放路径,并开启管道

9 中间件

下载中间件

  • 位置:引擎和下载器之间
  • 作用:批量拦截到整个工程中所有的请求响应
  • 拦截请求:(middlewares.py文件中)
    - UA伪装:process_request
    - 代理IP:process_exception:return request
  • 拦截响应:
    • 篡改响应数据,响应对象
    • 需求:爬取网易新闻中的新闻数据(标题和内容)
      • 1.通过网易新闻的首页解析出五大板块对应的详情页的url(没有动态加载)
      • 2.每一个板块对应的新闻标题都是动态加载出来的(动态加载)
      • 3.通过解析出每一条新闻详情页的url获取详情页的页面源码,解析出新闻内容

拦截请求,更改代理ip

数据解析文件,访问百度

import scrapy
class MiddlewaresTestSpider(scrapy.Spider):
    name = 'middlewares_test'
    # allowed_domains = ['www.xxxx.com']115.24.230.154->
    start_urls = ['http://www.baidu.com/s?wd=ip']
    def parse(self, response):
        page_text = response.text
        with open('./ip.html','w',encoding='utf-8') as fp:
            fp.write(page_text)

middlewares.py文件

# Define here the models for your spider middleware
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/spider-middleware.html
from scrapy import signals
import random
class MiddleproDownloaderMiddleware(object):
    # Not all methods need to be defined. If a method is not defined,
    # scrapy acts as if the downloader middleware does not modify the
    # passed objects.
    user_agent_list = [
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 "
        "(KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1",
        "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 "
        "(KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 "
        "(KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 "
        "(KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6",
        "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 "
        "(KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1",
        "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 "
        "(KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5",
        "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 "
        "(KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",
        "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 "
        "(KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3",
        "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 "
        "(KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24",
        "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 "
        "(KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24"
    ]
    PROXY_http = [
        '153.180.102.104:80',
        '195.208.131.189:56055',
    ]
    PROXY_https = [
        '120.83.49.90:9000',
        '95.189.112.214:35508',
    ]
    #拦截请求
    def process_request(self, request, spider):
        #UA伪装
        request.headers['User-Agent'] = random.choice(self.user_agent_list)
        #为了验证代理的操作是否生效
        request.meta['proxy'] = 'http://119.119.116.252'
        return None
    #拦截所有的响应
    def process_response(self, request, response, spider):
        # Called with the response returned from the downloader.
        # Must either;
        # - return a Response object
        # - return a Request object
        # - or raise IgnoreRequest
        return response
    #拦截发生异常的请求
    def process_exception(self, request, exception, spider):
        if request.url.split(':')[0] == 'http':
            #代理
            request.meta['proxy'] = 'http://'+random.choice(self.PROXY_http)
        else:
            request.meta['proxy'] = 'https://' + random.choice(self.PROXY_https)
        return request  #将修正之后的请求对象进行重新的请求发送
# useful for handling different item types with a single interface
from itemadapter import is_item, ItemAdapter

settings.py里打开下载中间件开关

# Enable or disable downloader middlewares
# See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html
DOWNLOADER_MIDDLEWARES = {
     
   'middlePro.middlewares.MiddleproDownloaderMiddleware': 543,
}

爬取网易新闻

使用selenium模块结果动态加载问题

  1. 数据解析模块news.py
import scrapy
from selenium import webdriver
from ..items import WangyiproItem
class NewsSpider(scrapy.Spider):
    name = 'news'
    # allowed_domains = ['www.cccom']
    start_urls = ['https://news.163.com/']
    models_urls = []  #存储五个板块对应详情页的url
    #解析五大板块对应详情页的url
    #实例化一个浏览器对象
    def __init__(self):
        self.bro = webdriver.Chrome(executable_path='D:\pycharm\PycharmProjects\pachong\lesson7_selenium\chromedriver')

    def parse(self, response):
        li_list = response.xpath('//*[@id="index2016_wrap"]/div[1]/div[2]/div[2]/div[2]/div[2]/div/ul/li')
        alist = [3,4,6,7,8]
        # print('**********************************')
        # print(li_list)
        for index in alist:
            model_url = li_list[index].xpath('./a/@href').extract_first()
            self.models_urls.append(model_url)

        #依次对每一个板块对应的页面进行请求
        for url in self.models_urls:#对每一个板块的url进行请求发送
            yield scrapy.Request(url,callback=self.parse_model)

    #每一个板块对应的新闻标题相关的内容都是动态加载
    def parse_model(self,response): #解析每一个板块页面中对应新闻的标题和新闻详情页的url
        # response.xpath()
        div_list = response.xpath('/html/body/div/div[3]/div[4]/div[1]/div/div/ul/li/div/div')
        # print('div_list:')
        # print(div_list)
        for div in div_list:
            title = div.xpath('./div/div[1]/h3/a/text()').extract_first()
            new_detail_url = div.xpath('./div/div[1]/h3/a/@href').extract_first()
            print(new_detail_url)
            item = WangyiproItem()
            item['title'] = title
            #对新闻详情页的url发起请求
            yield scrapy.Request(url=new_detail_url,callback=self.parse_detail,meta={
     'item':item})
    def parse_detail(self,response):#解析新闻内容
        content = response.xpath('//*[@id="content"]/div[2]//text()').extract()
        content = ''.join(content)
        item = response.meta['item']
        item['content'] = content
        yield item

    def closed(self,spider):
        self.bro.quit()
  1. items.py类
import scrapy
class WangyiproItem(scrapy.Item):

    title = scrapy.Field()
    content = scrapy.Field()
  1. middlewares.py中间件,拦截请求重写响应⭐
# Define here the models for your spider middleware
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/spider-middleware.html
from time import sleep

from scrapy import signals

# useful for handling different item types with a single interface
from itemadapter import is_item, ItemAdapter
from scrapy.http import HtmlResponse
class WangyiDownloaderMiddleware:

    def process_request(self, request, spider):

        return None

    # 该方法拦截五大板块对应的响应对象,进行篡改
    def process_response(self, request, response, spider):  # spider爬虫对象
        bro = spider.bro  # 获取了在爬虫类中定义的浏览器对象
        # 挑选出指定的响应对象进行篡改
        # 通过url指定request
        # 通过request指定response
        if request.url in spider.models_urls:
            bro.get(request.url)  # 五个板块对应的url进行请求
            sleep(1)
            page_text = bro.page_source  # 包含了动态加载的新闻数据
            # response #五大板块对应的响应对象
            # 针对定位到的这些response进行篡改
            # 实例化一个新的响应对象(符合需求:包含动态加载出的新闻数据),替代原来旧的响应对象
            # 如何获取动态加载出的新闻数据?
            # 基于selenium便捷的获取动态加载数据
            new_response = HtmlResponse(url=request.url, body=page_text, encoding='utf-8', request=request)
            return new_response
        else:
            # response #其他请求对应的响应对象
            return response

  1. settings.py配置文件

BOT_NAME = 'wangyi'
SPIDER_MODULES = ['wangyi.spiders']
NEWSPIDER_MODULE = 'wangyi.spiders'


# Crawl responsibly by identifying yourself (and your website) on the user-agent
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36 Edg/86.0.622.69'

# Obey robots.txt rules
ROBOTSTXT_OBEY = False

# Enable or disable downloader middlewares
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
DOWNLOADER_MIDDLEWARES = {
     
   'wangyi.middlewares.WangyiDownloaderMiddleware': 543,
}

# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
     
   'wangyi.pipelines.WangyiPipeline': 300,
}
LOG_LEVEL = 'ERROR'

10 全站数据爬取利器CrawlSpider

  • 全站数据爬取的方式
    - 基于Spider:手动请求
    - 基于CrawlSpider
  • CrawlSpider的使用:
    - 创建一个工程
    - cd XXX
    - 创建爬虫文件(CrawlSpider):
    - scrapy genspider -t crawl xxx www.xxxx.com
    - 链接提取器LinkExtractor:
    - 作用:根据指定的规则(allow)进行指定链接的提取
    - 规则解析器Rule:
    - 作用:将链接提取器提取到的链接进行指定规则(callback)的解析

全站爬取糗图百科

        分析:爬取的数据没有在同一张页面中。
        1.可以使用链接提取器提取所有的页码链接
        2.让链接提取器提取所有的新闻详情页的链接

创建文件 scrapy genspider -t crawl sun2 www.xxxx.com
数据解析文件sun2

import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from ..items import DetailItem, SunproItem

class Sun2Spider(CrawlSpider):
    name = 'sun2'
    # allowed_domains = ['www.xxx.com']http://wz.sun0769.com/political/index/politicsNewest?id=1&page=1
    start_urls = ['https://www.qiushibaike.com/']

    # 链接提取器:根据指定规则(allow="正则")进行指定链接的提取
    # 
    link = LinkExtractor(allow=r'/8hr/page/\d+/')

    link_detail = LinkExtractor(allow=r'/article/\d+')
    # print(link_detail.link_extractor)
    rules = (
        # 规则解析器:将链接提取器提取到的链接进行指定规则(callback)的解析操作
        Rule(link, callback='parse_item', follow=False),
        # follow=True:可以将链接提取器 继续作用到 连接提取器提取到的链接 所对应的页面中
        Rule(link_detail, callback='parse_detail')
    )

    # http://wz.sun0769.com/html/question/201907/421001.shtml
    # http://wz.sun0769.com/html/question/201907/420987.shtml

    # 解析新闻编号和新闻的标题
    # 如下两个解析方法中是不可以实现请求传参!
    # 如法将两个解析方法解析的数据存储到同一个item中,可以以此存储到两个item
    def parse_item(self, response):
        # 注意:xpath表达式中不可以出现tbody标签
        print(response)
        tr_list = response.xpath('//*[@id="content"]/div/div[2]/div/ul/li')
        for tr in tr_list:
            #//*[@id="qiushi_tag_123792375"]/div/div/a/span//*[@id="qiushi_tag_123792375"]/div/div/a
            new_num = tr.xpath('./div[1]/div[1]/a/span/text()').extract_first()
            new_title = tr.xpath('./div[1]/a[1]/text()').extract_first()
            # print('new_num',new_num)
            # print('new_title',new_title)
            item = SunproItem()
            item['title'] = new_title
            item['new_num'] = new_num

            yield item

    # 解析新闻内容和新闻编号/html/body/div[3]/div[2]/div[2]/div[2]/pre
    #//*[@id="articleSideLeft"]/a/div[1]/span[1]
    def parse_detail(self, response):
        new_id = response.xpath('//*[@id="articleSideLeft"]/a/div[1]/span[1]/text()').extract_first()
        new_content = response.xpath('//*[@id="single-next-link"]/div[1]//text()').extract()
        new_content = ''.join(new_content)

        # print('new_id',new_id)
        # print('new_content',new_content)
        item = DetailItem()
        item['content'] = new_content
        item['new_id'] = new_id

        yield item

持久化管道文件pipelines.py


from itemadapter import ItemAdapter
class SunproPipeline:
    fp = None
    #重写父类的一个方法:该方法只在开始爬虫的时候被调用一次
    def open_spider(self,spider):
        print('开始爬虫......')
        self.fp = open('./111111111111.txt','w',encoding='utf-8')
    #专门用来处理item类型对象
    #该方法可以接收爬虫文件提交过来的item对象
    #该方法没接收到一个item就会被调用一次
    def process_item(self, item, spider):
        if item.__class__.__name__ == 'DetailItem':
            # print(item['new_id'],item['content'])
            self.fp.write('细节id' + ':' + item['new_id'] + '\n')
            self.fp.write('细节内容' + ':' + item['content'] + '\n')
            pass
        else:
            # print(item['new_num'],item['title'])
            self.fp.write('id' + ':' + item['new_num'] + '\n')
            self.fp.write('title' + ':' + item['title'] + '\n')
        return item #就会传递给下一个即将被执行的管道类
    def close_spider(self,spider):
        print('结束爬虫!')
        self.fp.close()

items类文件items.py

import scrapy
class SunproItem(scrapy.Item):
    # define the fields for your item here like:
    title = scrapy.Field()
    new_num = scrapy.Field()
class DetailItem(scrapy.Item):
    new_id = scrapy.Field()
    content = scrapy.Field()

配置文件settings.py

BOT_NAME = 'sunPro'
SPIDER_MODULES = ['sunPro.spiders']
NEWSPIDER_MODULE = 'sunPro.spiders'
# Crawl responsibly by identifying yourself (and your website) on the user-agent
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36 Edg/86.0.622.69'
LOG_LEVEL = 'ERROR'
# Obey robots.txt rules
ROBOTSTXT_OBEY = False
ITEM_PIPELINES = {
     
   'sunPro.pipelines.SunproPipeline': 300,
}


你可能感兴趣的:(爬虫,Python,python,爬虫,大数据)