朴素贝叶斯及python实现

朴素贝叶斯

是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定数据集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于此模型,对于给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。
朴素贝叶斯及python实现_第1张图片
式(2)为极大似然估计。

 # 先验概率
    def pAbusice(self, labels):
        N = len(labels)
        label = dict(Counter(labels))
        pa = {
     }
        for key, val in label.items():
            pa[key] = float(val) / float(N)
        return pa

    # 极大似然估计
    def MIE(self, data):
        mie = {
     label: [] for label in data}
        for label, values in data.items():
            n = len(data[label])
            for value in zip(*values):
                val = Counter(value)
                m = {
     }
                for k, v in val.items():
                    p = v / n
                    m[k] = p
                mie[label].append(m)
        return mie

贝叶斯估计

用极大似然估计可能会出现所要估计得概率值为0的情况。这是会影响到后验概率的计算结果,使分类产生偏差。解决这一问题的方法使采用贝叶斯估计法。

条件概率的贝叶斯方法:

P λ ( X ( j ) = a j l ∣ Y = c k ) = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c k ) + λ ∑ i = 1 N I ( y i = c k ) + S j λ P_\lambda(X^{(j)}=a_{jl}|Y=c_k)=\frac{\sum_{i=1}^{N}I(x_{i}^{(j)}=a_{jl},y_i=c_k)+\lambda}{\sum_{i=1}^{N}I(y_i=c_k)+S_j \lambda} Pλ(X(j)=ajlY=ck)=i=1NI(yi=ck)+Sjλi=1NI(xi(j)=ajl,yi=ck)+λ

式中 λ ≥ 0 λ≥0 λ0 λ = 0 λ=0 λ=0时,为极大似然估计; λ = 1 λ=1 λ=1时,称为拉普拉斯平滑。 S j S_j Sj是当 y i = c k y_i=c_k yi=ck时,特征的种类。

先验概率的贝叶斯估计:

P λ ( Y = c k ) = ∑ i = 1 N I ( y i = c i ) + λ N + K λ P_{\lambda}\left(Y=c_{k}\right)=\frac{\sum_{i=1}^{N} I\left(y_{i}=c_{i}\right)+\lambda}{N+K \lambda} Pλ(Y=ck)=N+Kλi=1NI(yi=ci)+λ
N N N为总的标签数, K K K为总的标签种类。
利用上面两式代替算法一中的(1)、(2)得到贝叶斯方法的贝叶斯估计。

# 先验概率
def pAbusice(self, labels):
    N = len(labels)
    label = dict(Counter(labels))
    K = len(label)
    pa = {
     }
    for key, val in label.items():
        a = val+self.lamda
        b = N+self.lamda*K
        pa[key] = a/b
    return pa

# 极大似然估计
def MIE(self, data):
    mie = {
     label: [] for label in data}
    for label, values in data.items():
        n = len(data[label])
        for value in zip(*values):
            val = Counter(value)
            S = len(val)
            m = {
     }
            for k, v in val.items():
                p = (v+self.lamda) / (n+S*self.lamda)
                m[k] = p
            mie[label].append(m)
    return mie

G a u s s i a n N B GaussianNB GaussianNB高斯朴素贝叶斯

特征的可能性被假设为高斯

概率密度函数:
P ( x i ∣ y k ) = 1 2 π σ y k 2 e x p ( − ( x i − μ y k ) 2 2 σ y k 2 ) P(x_i | y_k)=\frac{1}{\sqrt{2\pi\sigma^2_{yk}}}exp(-\frac{(x_i-\mu_{yk})^2}{2\sigma^2_{yk}}) P(xiyk)=2πσyk2 1exp(2σyk2(xiμyk)2)

数学期望(mean): μ \mu μ

方差: σ 2 = ∑ ( X − μ ) 2 N \sigma^2=\frac{\sum(X-\mu)^2}{N} σ2=N(Xμ)2

# 数学期望
@staticmethod
def mean(X):
    return sum(X) / float(len(X))

# 标准差
def stdev(self, X):
    avg = self.mean(X)
    return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))

# 概率密度函数
def gaussian_probability(self, x, mean, stdev):
    exponent = math.exp(-(math.pow(x - mean, 2) / (2 * math.pow(stdev, 2))))
    return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent

可运行代码

朴素贝叶斯

"""
朴素贝叶斯
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from collections import Counter
import math


class NaiveBayes(object):
    def __init__(self):
        self.mie = None
        self.pabusice = None

    # 先验概率
    def pAbusice(self, labels):
        N = len(labels)
        label = dict(Counter(labels))
        pa = {
     }
        for key, val in label.items():
            pa[key] = float(val) / float(N)
        return pa

    # 极大似然估计
    def MIE(self, data):
        mie = {
     label: [] for label in data}
        for label, values in data.items():
            n = len(data[label])
            for value in zip(*values):
                val = Counter(value)
                m = {
     }
                for k, v in val.items():
                    p = v / n
                    m[k] = p
                mie[label].append(m)
        return mie

    # 训练入口
    def fit(self, X_train, y_train):
        n = len(X_train)
        m = len(X_train[0])

        # 数据处理
        labels = list(set(y_train))
        data = {
     label: [] for label in labels}
        for f, label in zip(X_train, y_train):
            data[label].append(f)

        # 先验概率
        self.pabusice = self.pAbusice(y_train)

        # 极大似然估计
        self.mie = self.MIE(data)

    # 预测值计算
    def calculate_probabilities(self, X):
        res = {
     label: [] for label, val in self.pabusice.items()}
        for label, value in self.pabusice.items():
            ans = 1
            mi = self.mie[label]
            for x in range(len(X)):
                ml = mi[x]
                a = ml[X[x]]
                ans *= a
            ans *= value
            res[label] = ans
        return res

    def predict(self, X_test):
        label = sorted(
            self.calculate_probabilities(X_test).items(),
            key=lambda x: x[1]
        )[-1][0]

        return label

    def score(self, X_test, y_test):
        right = 0
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right += 1
        return right / float(len(X_test))


if __name__ == '__main__':
    X_train = [(1, 'S'), (1, 'M'), (1, 'M'), (1, 'S'), (1, 'S'),
               (2, 'S'), (2, 'M'), (2, 'M'), (2, 'L'), (2, 'L'),
               (3, 'L'), (3, 'M'), (3, 'M'), (3, 'L'), (3, 'L')]
    y_train = [-1, -1, 1, 1, -1,
               -1, -1, 1, 1, 1,
               1, 1, 1, 1, -1]
    model = NaiveBayes()
    model.fit(X_train, y_train)
    print(model.predict([2, 'S']))

贝叶斯估计

"""
朴素贝叶斯
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from collections import Counter
import math


class NaiveBayes(object):
    def __init__(self,lamda):
        self.mie = None
        self.pabusice = None
        self.lamda = lamda

    # 先验概率
    def pAbusice(self, labels):
        N = len(labels)
        label = dict(Counter(labels))
        K = len(label)
        pa = {
     }
        for key, val in label.items():
            a = val+self.lamda
            b = N+self.lamda*K
            pa[key] = a/b
        return pa

    # 极大似然估计
    def MIE(self, data):
        mie = {
     label: [] for label in data}
        for label, values in data.items():
            n = len(data[label])
            for value in zip(*values):
                val = Counter(value)
                S = len(val)
                m = {
     }
                for k, v in val.items():
                    p = (v+self.lamda) / (n+S*self.lamda)
                    m[k] = p
                mie[label].append(m)
        return mie

    # 训练入口
    def fit(self, X_train, y_train):
        n = len(X_train)
        m = len(X_train[0])

        # 数据处理
        labels = list(set(y_train))
        data = {
     label: [] for label in labels}
        for f, label in zip(X_train, y_train):
            data[label].append(f)

        # 先验概率
        self.pabusice = self.pAbusice(y_train)
        # 极大似然估计
        self.mie = self.MIE(data)

    # 预测值计算
    def calculate_probabilities(self, X):
        res = {
     label: [] for label, val in self.pabusice.items()}
        for label, value in self.pabusice.items():
            ans = 1
            mi = self.mie[label]
            for x in range(len(X)):
                ml = mi[x]
                a = ml[X[x]]
                ans *= a
            ans *= value
            res[label] = ans
        return res

    def predict(self, X_test):
        label = sorted(
            self.calculate_probabilities(X_test).items(),
            key=lambda x: x[1]
        )[-1][0]

        return label

    def score(self, X_test, y_test):
        right = 0
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right += 1
        return right / float(len(X_test))


if __name__ == '__main__':
    X_train = [(1, 'S'), (1, 'M'), (1, 'M'), (1, 'S'), (1, 'S'),
               (2, 'S'), (2, 'M'), (2, 'M'), (2, 'L'), (2, 'L'),
               (3, 'L'), (3, 'M'), (3, 'M'), (3, 'L'), (3, 'L')]
    y_train = [-1, -1, 1, 1, -1,
               -1, -1, 1, 1, 1,
               1, 1, 1, 1, -1]
    lamda = int(input("Please enter you want setting lambda:"))
    model = NaiveBayes(lamda)
    model.fit(X_train, y_train)
    print(model.predict([2, 'S']))

高斯朴素贝叶斯

"""
高斯朴素贝叶斯
"""

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from collections import Counter
import math


def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, :])
    return data[:, :-1], data[:, -1]


class NaiveBayes(object):
    def __init__(self):
        self.model = None

    # 数学期望
    @staticmethod
    def mean(X):
        return sum(X) / float(len(X))

    # 标准差
    def stdev(self, X):
        avg = self.mean(X)
        return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))

    # 概率密度函数
    def gaussian_probability(self, x, mean, stdev):
        exponent = math.exp(-(math.pow(x - mean, 2) / (2 * math.pow(stdev, 2))))
        return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent

    # 处理X_train
    def summarize(self, trian_data):
        summaries = [(self.mean(i), self.stdev(i)) for i in zip(*trian_data)]
        return summaries

    # 分别求出数学期望和标准差
    def fit(self, X, y):
        labels = list(set(y))
        data = {
     label: [] for label in labels}
        for f, label in zip(X, y):
            data[label].append(f)
        self.model = {
     
            label: self.summarize(value)
            for label, value in data.items()
        }
        return 'gaussianNB train done!'

    # 计算概率
    def calculate_probabilities(self, input_data):
        probabilities = {
     }
        for label, value in self.model.items():
            probabilities[label] = 1
            for i in range(len(value)):
                mean, stdev = value[i]
                probabilities[label] *= self.gaussian_probability(
                    input_data[i], mean, stdev
                )
        return probabilities

    # 类别,预测
    def predict(self, X_test):
        label = sorted(
            self.calculate_probabilities(X_test).items(),
            key=lambda x: x[-1]
        )[-1][0]

        return label

    def score(self, X_test, y_test):
        right = 0
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right += 1
        return right / float(len(X_test))


if __name__ == '__main__':
    X, y = create_data()
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
    model = NaiveBayes()
    model.fit(X_train, y_train)
    print(model.predict([4.4, 3.2, 1.3, 0.2]))
    print(model.score(X_test, y_test))

你可能感兴趣的:(机器学习,python,机器学习)