原文:https://blog.csdn.net/qingyang8513/article/details/80675872
2.1 开运算
腐蚀与膨胀作为形态学的基本操作,经过组合后可以很容易的实现更高一级的形态学运算。开运算即是先腐蚀后膨胀的得到的结果,即dst = open(src, element) = dilate(erode(src, element))。开运算可以消除局部小的白色杂点,在纤细点处分离物体,并且在平滑较大物体的边界的同时不明显改变其面积。
2.2 闭运算
闭运算过程与开运算过程相反,其是先膨胀后腐蚀的过程,可以消除图像中的小黑点,dst = close(src, element) = erode(dilate(src, element))。。
2.3 形态学梯度
形态学梯度是膨胀图与腐蚀图之差,其数学表达式为:dst = morph_grad(src, element) = dilate(src, element) - erode(src, element)。对二值图像进行形态学梯度运算,可以突出物体边缘。通常,我们采用形态学梯度来保留物体的边缘轮廓。
2.4 顶帽
顶帽运算又常称为礼帽运算,是原始图像与图像开运算结果之差,其数学表达式为:dst = tophat(src, element) = src - open(src, element)。顶帽运算通常用来分离比邻近点亮一些的斑块,在一幅图像具有大幅背景且微小细节比较有规律的情况下,顶帽运算可以用来进行背景提取。
2.5 黑帽
黑帽运算是图像闭运算结果与原始图像之差,其数学表达式为:dst = tophat(src, element) = close(src, element) - src。黑帽运算通常用来分离比邻近点暗一些的斑块,可以突出比原始图轮廓周围区域更暗的区域。
cv::morphologyEx()函数综合形态学大部分运算,可以实现形态学腐蚀、膨胀、开运算、闭运算、形态学梯度、顶帽、黑帽等。cv::morphologyEx()声明如下:
void cv::morphologyEx | ( | InputArray | src, |
OutputArray | dst, | ||
int | op, | ||
InputArray | kernel, | ||
Point | anchor = Point(-1,-1) , |
||
int | iterations = 1 , |
||
int | borderType = BORDER_CONSTANT , |
||
const Scalar & | borderValue = morphologyDefaultBorderValue() |
||
) |
#include
执行高级形态转换。
函数cv :: morphologyEx可以使用侵蚀和膨胀作为基本操作来执行高级形态学变换。
任何操作都可以就地完成。在多通道图像的情况下,每个通道被独立处理。
参数
SRC | 来源图片。通道数可以是任意的。深度应为CV_8U,CV_16U,CV_16S,CV_32F或CV_64F之一。 |
DST | 与源图像大小和类型相同的目标图像。 |
op | 形态学操作的类型,请参见变形类型 |
核心 | 结构元素。它可以使用getStructuringElement创建。 |
锚 | 用内核锚定位置。负值意味着锚位于核心中心。 |
迭代 | 侵蚀和扩张的次数。 |
borderType | 像素外推方法,请参阅BorderTypes |
borderValue | 边界不变的边界值。默认值具有特殊含义。 |
其中,参数op用于选择形态学运算类型,这里用到的有下面几个,参考函数定义:
1)MORPH_OPEN:开运算
2)MORPH_CLOSE:闭运算
3)MORPH_GRADIENT:形态学梯度
4)MORPH_TOPHAT:顶帽
5)MORPH_BLACKHAP:黑帽
6)MORPH_ERODE:腐蚀
7)MORPH_DILATE:膨胀
static bool ocl_morphologyEx(InputArray _src, OutputArray _dst, int op,
InputArray kernel, Point anchor, int iterations,
int borderType, const Scalar& borderValue)
{
_dst.createSameSize(_src, _src.type());
bool submat = _dst.isSubmatrix();
UMat temp;
_OutputArray _temp = submat ? _dst : _OutputArray(temp);
switch( op )
{
case MORPH_ERODE:
if (!ocl_morphOp( _src, _dst, kernel, anchor, iterations, MORPH_ERODE, borderType, borderValue ))
return false;
break;
case MORPH_DILATE:
if (!ocl_morphOp( _src, _dst, kernel, anchor, iterations, MORPH_DILATE, borderType, borderValue ))
return false;
break;
case MORPH_OPEN:
if (!ocl_morphOp( _src, _temp, kernel, anchor, iterations, MORPH_ERODE, borderType, borderValue ))
return false;
if (!ocl_morphOp( _temp, _dst, kernel, anchor, iterations, MORPH_DILATE, borderType, borderValue ))
return false;
break;
case MORPH_CLOSE:
if (!ocl_morphOp( _src, _temp, kernel, anchor, iterations, MORPH_DILATE, borderType, borderValue ))
return false;
if (!ocl_morphOp( _temp, _dst, kernel, anchor, iterations, MORPH_ERODE, borderType, borderValue ))
return false;
break;
case MORPH_GRADIENT:
if (!ocl_morphOp( _src, temp, kernel, anchor, iterations, MORPH_ERODE, borderType, borderValue ))
return false;
if (!ocl_morphOp( _src, _dst, kernel, anchor, iterations, MORPH_DILATE, borderType, borderValue, MORPH_GRADIENT, temp ))
return false;
break;
case MORPH_TOPHAT:
if (!ocl_morphOp( _src, _temp, kernel, anchor, iterations, MORPH_ERODE, borderType, borderValue ))
return false;
if (!ocl_morphOp( _temp, _dst, kernel, anchor, iterations, MORPH_DILATE, borderType, borderValue, MORPH_TOPHAT, _src ))
return false;
break;
case MORPH_BLACKHAT:
if (!ocl_morphOp( _src, _temp, kernel, anchor, iterations, MORPH_DILATE, borderType, borderValue ))
return false;
if (!ocl_morphOp( _temp, _dst, kernel, anchor, iterations, MORPH_ERODE, borderType, borderValue, MORPH_BLACKHAT, _src ))
return false;
break;
default:
CV_Error( CV_StsBadArg, "unknown morphological operation" );
}
return true;
}
与005完全相同.mainwindow.ui
MainWindow
0
0
655
416
MainWindow
30
20
54
12
原始图像:
360
20
54
12
运行效果:
30
70
261
191
border:1px solid black
Original Image
360
70
261
191
border:1px solid black
Processed Image
30
320
54
12
核大小:
120
320
21
20
background-color: rgb(255, 85, 127);
Qt::AlignCenter
160
320
221
20
Qt::Horizontal
550
320
75
23
打开图像
468
321
71
21
400
320
61
16
操作类型:
0
0
655
23
TopToolBarArea
false
mainwindow.h
#ifndef MAINWINDOW_H
#define MAINWINDOW_H
#include
#include "opencv2/opencv.hpp"
using namespace cv;
namespace Ui {
class MainWindow;
}
class MainWindow : public QMainWindow
{
Q_OBJECT
public:
explicit MainWindow(QWidget *parent = 0);
~MainWindow();
private:
Ui::MainWindow *ui;
int m_KernelValue;
bool m_isOpenFile;
int m_typeCurSel;
Mat m_srcImage;
Mat m_dstImage;
public:
void on_MorphologyEx(int typeSel);
private slots:
void on_pushButton_OpenImg_clicked();
void on_comboBox_Type_currentIndexChanged(int index);
void on_horizontalSlider_KernelValue_valueChanged(int value);
};
#endif // MAINWINDOW_H
mainwindow.cpp
#include "mainwindow.h"
#include "ui_mainwindow.h"
#include
#include
#define KERNEL_MIN_VALUE 0
#define KERNEL_MAX_VALUE 40
MainWindow::MainWindow(QWidget *parent) :
QMainWindow(parent),
ui(new Ui::MainWindow)
{
ui->setupUi(this);
setWindowTitle(tr("Qt_OpenCV形态学运算"));
//初始化变量
m_KernelValue = 15;
m_isOpenFile = false;
m_typeCurSel = 0;
//初始化控件
ui->horizontalSlider_KernelValue->setMinimum(KERNEL_MIN_VALUE);
ui->horizontalSlider_KernelValue->setMaximum(KERNEL_MAX_VALUE);
ui->horizontalSlider_KernelValue->setValue(m_KernelValue);
ui->label_KernelValue->setText(QString::number(m_KernelValue));
ui->comboBox_Type->insertItem(0, "膨胀");
ui->comboBox_Type->insertItem(1, "腐蚀");
ui->comboBox_Type->insertItem(2, "开运算");
ui->comboBox_Type->insertItem(3, "闭运算");
ui->comboBox_Type->insertItem(4, "形态学梯度");
ui->comboBox_Type->insertItem(5, "顶帽");
ui->comboBox_Type->insertItem(6, "黑帽");
ui->comboBox_Type->setCurrentIndex(m_typeCurSel);
}
MainWindow::~MainWindow()
{
delete ui;
}
void MainWindow::on_pushButton_OpenImg_clicked()
{
QString fileName = QFileDialog::getOpenFileName(this,tr("Open Image"),".",tr("Image File(*.png *.jpg *.jpeg *.bmp)"));
if (fileName.isEmpty())
{
return;
}
m_srcImage = imread(fileName.toLatin1().data());//读取图片数据
if (!m_srcImage.data)
{
m_isOpenFile = false;
QMessageBox box(QMessageBox::Critical, "打开图像", "读取图像文件失败!请重新打开.");
box.setStandardButtons(QMessageBox::Ok);
box.setButtonText(QMessageBox::Ok, QString("确定"));
box.exec();
return;
}
m_isOpenFile = true;//修改打开标志
Mat disImageTemp;
cvtColor(m_srcImage, disImageTemp, COLOR_BGR2RGB);//图像格式转换
QImage disImage = QImage((const unsigned char*)(disImageTemp.data),disImageTemp.cols,disImageTemp.rows,QImage::Format_RGB888);
ui->label_OriginalImg->setPixmap(QPixmap::fromImage(disImage.scaled(ui->label_OriginalImg->width(), ui->label_OriginalImg->height(), Qt::KeepAspectRatio)));
on_MorphologyEx(m_typeCurSel);
}
void MainWindow::on_horizontalSlider_KernelValue_valueChanged(int value)
{
if (m_isOpenFile)
{
m_KernelValue = value;
ui->label_KernelValue->setText(QString::number(m_KernelValue));
on_MorphologyEx(m_typeCurSel);
}
}
void MainWindow::on_MorphologyEx(int typeSel)
{
//获取内核形状和尺寸
Mat element = getStructuringElement(MORPH_RECT, Size(m_KernelValue * 2 + 1, m_KernelValue * 2 + 1), Point(m_KernelValue, m_KernelValue));
//腐蚀操作
switch (typeSel) {
case 0:
morphologyEx(m_srcImage, m_dstImage, MORPH_DILATE, element);
break;
case 1:
morphologyEx(m_srcImage, m_dstImage, MORPH_ERODE, element);
break;
case 2:
morphologyEx(m_srcImage, m_dstImage, MORPH_OPEN, element);
break;
case 3:
morphologyEx(m_srcImage, m_dstImage, MORPH_CLOSE, element);
break;
case 4:
morphologyEx(m_srcImage, m_dstImage, MORPH_GRADIENT, element);
break;
case 5:
morphologyEx(m_srcImage, m_dstImage, MORPH_TOPHAT, element);
break;
case 6:
morphologyEx(m_srcImage, m_dstImage, MORPH_BLACKHAT, element);
break;
default:
break;
}
//显示
cvtColor(m_dstImage, m_dstImage, COLOR_BGR2RGB);//图像格式转换
QImage disImage = QImage((const unsigned char*)(m_dstImage.data),m_dstImage.cols,m_dstImage.rows,QImage::Format_RGB888);
ui->label_ProcessedImg->setPixmap(QPixmap::fromImage(disImage.scaled(ui->label_ProcessedImg->width(), ui->label_ProcessedImg->height(), Qt::KeepAspectRatio)));
}
void MainWindow::on_comboBox_Type_currentIndexChanged(int index)
{
m_typeCurSel = index;
if (m_isOpenFile)
{
on_MorphologyEx(m_typeCurSel);
}
}
pro 文件:
#-------------------------------------------------
#
# Project created by QtCreator 2019-07-12T14:41:02
#
#-------------------------------------------------
QT += core gui
greaterThan(QT_MAJOR_VERSION, 4): QT += widgets
TARGET = OpenCV_Filter
TEMPLATE = app
# The following define makes your compiler emit warnings if you use
# any feature of Qt which has been marked as deprecated (the exact warnings
# depend on your compiler). Please consult the documentation of the
# deprecated API in order to know how to port your code away from it.
DEFINES += QT_DEPRECATED_WARNINGS
# You can also make your code fail to compile if you use deprecated APIs.
# In order to do so, uncomment the following line.
# You can also select to disable deprecated APIs only up to a certain version of Qt.
#DEFINES += QT_DISABLE_DEPRECATED_BEFORE=0x060000 # disables all the APIs deprecated before Qt 6.0.0
CONFIG += c++11
SOURCES += \
main.cpp \
mainwindow.cpp
HEADERS += \
mainwindow.h
FORMS += \
mainwindow.ui
# Default rules for deployment.
qnx: target.path = /tmp/$${TARGET}/bin
else: unix:!android: target.path = /opt/$${TARGET}/bin
!isEmpty(target.path): INSTALLS += target
INCLUDEPATH += $$PWD/../opencv_qt/include\
$$PWD/../opencv_qt/include/opencv\
$$PWD/../opencv_qt/include/opencv2
unix|win32: LIBS += -L$$PWD/../opencv_qt/bin/ -llibopencv_calib3d410
unix|win32: LIBS += -L$$PWD/../opencv_qt/bin/ -llibopencv_core410
unix|win32: LIBS += -L$$PWD/../opencv_qt/bin/ -llibopencv_dnn410
unix|win32: LIBS += -L$$PWD/../opencv_qt/bin/ -llibopencv_features2d410
unix|win32: LIBS += -L$$PWD/../opencv_qt/bin/ -llibopencv_flann410
unix|win32: LIBS += -L$$PWD/../opencv_qt/bin/ -llibopencv_highgui410
unix|win32: LIBS += -L$$PWD/../opencv_qt/bin/ -llibopencv_imgcodecs410
unix|win32: LIBS += -L$$PWD/../opencv_qt/bin/ -llibopencv_imgproc410
unix|win32: LIBS += -L$$PWD/../opencv_qt/bin/ -llibopencv_ml410
unix|win32: LIBS += -L$$PWD/../opencv_qt/bin/ -llibopencv_objdetect410
unix|win32: LIBS += -L$$PWD/../opencv_qt/bin/ -llibopencv_photo410
unix|win32: LIBS += -L$$PWD/../opencv_qt/bin/ -llibopencv_stitching410
unix|win32: LIBS += -L$$PWD/../opencv_qt/bin/ -llibopencv_video410
unix|win32: LIBS += -L$$PWD/../opencv_qt/bin/ -llibopencv_videoio410
unix|win32: LIBS += -L$$PWD/../opencv_qt/bin/ -lopencv_ffmpeg410
实验效果:
或许用纯黑白的图像更能说明问题:
经过了膨胀操作,大圆中的小黑点被消除了
经过腐蚀操作,黑色背景上的小白点被消除了
开运算较好的保留了边缘
闭运算保留背景细节
形态学梯度突出了图像的轮廓
顶帽是原图像与开操作之间的差值图像,分离比邻近点亮一些的斑块
黑帽是闭操作图像与源图像的差值图像,分离比邻近点暗一点的斑块