一、MPP发展历程
1、SMP(Symmetric Multi-Processor)
所谓对称多处理器结构,是指服务器中多个CPU对称工作,无主次或从属关系。各CPU共享相同的物理内存,每个 CPU访问内存中的任何地址所需时间是相同的,因此SMP也被称为一致存储器访问结构(UMA:Uniform Memory Access)。对SMP服务器进行扩展的方式包括增加内存、使用更快的CPU、增加CPU、扩充I/O(槽口数与总线数)以及添加更多的外部设备(通常是磁盘存储)。
SMP服务器的主要特征是共享,系统中所有资源(CPU、内存、I/O等)都是共享的。也正是由于这种特征,导致了SMP服务器的主要问题,那就是它的扩展能力非常有限。对于SMP服务器而言,每一个共享的环节都可能造成SMP服务器扩展时的瓶颈,而最受限制的则是内存。由于每个CPU必须通过相同的内存总线访问相同的内存资源,因此随着CPU数量的增加,内存访问冲突将迅速增加,最终会造成CPU资源的浪费,使 CPU性能的有效性大大降低。
有实验数据表明,SMP型的服务器CPU最好是2-4颗就OK了,多余的就浪费了。
2、NUMA(Non-Uniform Memory Access)
由于SMP在扩展能力上的限制,人们开始探究如何进行有效地扩展从而构建大型系统的技术,NUMA就是这种努力下的结果之一。利用NUMA技术,可以把几十个CPU(甚至上百个CPU)组合在一个服务器内。NUMA服务器的基本特征是具有多个CPU模块,每个CPU模块由多个CPU(如4个)组成,并且具有独立的本地内存、I/O槽口等。由于其节点之间可以通过互联模块(如称为Crossbar Switch)进行连接和信息交互,因此每个CPU可以访问整个系统的内存(这是NUMA系统与MPP系统的重要差别)。显然,访问本地内存的速度将远远高于访问远地内存(系统内其它节点的内存)的速度,这也是非一致存储访问NUMA的由来。由于这个特点,为了更好地发挥系统性能,开发应用程序时需要尽量减少不同CPU模块之间的信息交互。利用NUMA技术,可以较好地解决原来SMP系统的扩展问题,在一个物理服务器内可以支持上百个CPU。比较典型的NUMA服务器的例子包括HP的Superdome、SUN15K、IBMp690等。
每个CPU模块之间都是通过互联模块进行连接和信息交互,CPU都是互通互联的,同时,每个CPU模块平均划分为若干个Chip(不多于4个),每个Chip都有自己的内存控制器及内存插槽。
在NUMA中还有三个节点的概念:
1)本地节点:对于某个节点中的所有CPU,此节点称为本地节点。
2)邻居节点:与本地节点相邻的节点称为邻居节点。
3)远端节点:非本地节点或邻居节点的节点,称为远端节点。
4)邻居节点和远端节点,都称作非本地节点(Off Node)。
CPU访问不同类型节点内存的速度是不相同的,访问本地节点的速度最快,访问远端节点的速度最慢,即访问速度与节点的距离有关,距离越远访问速度越慢,此距离称作Node Distance。应用程序要尽量的减少不通CPU模块之间的交互,如果应用程序能有方法固定在一个CPU模块里,那么应用的性能将会有很大的提升。
3、MPP(Massively Parallel Processing)
MPP是将任务并行的分散到多个服务器和节点上,在每个节点上计算完成后,将各自部分的结果汇总在一起得到最终的结果(与Hadoop相似)。MPP的系统扩展和NUMA不同,MPP是由多台SMP服务器通过一定的节点互联网络进行连接,协同工作,完成相同的任务,从用户的角度来看是一个服务器系统。每个节点只访问自己的资源,所以是一种完全无共享(Share Nothing)结构。
(1)MPP结构扩展能力最强,理论可以无限扩展。由于MPP是多台SPM服务器连接的,每个节点的CPU不能访问另一个节点内存,所以也不存在异地访问的问题。
(2)每个节点内的CPU不能访问另一个节点的内存,节点之间的信息交互是通过节点互联网络实现的,这个过程称为数据重分配。
(3)MPP服务器需要一种复杂的机制来调度和平衡各个节点的负载和并行处理过程。目前,一些基于MPP技术的服务器往往通过系统级软件(如数据库)来屏蔽这种复杂性。举个例子,Teradata就是基于MPP技术的一个关系数据库软件(这是最早采用MPP架构的数据库),基于此数据库来开发应用时,不管后台服务器由多少节点组成,开发人员面对的都是同一个数据库系统,而无需考虑如何调度其中某几个节点的负载。
MPP架构特征:(1)任务并行执行;(2)数据分布式存储(本地化);(3)分布式计算;(4)高并发,单个节点并发能力大于300用户;(5)横向扩展,支持集群节点的扩容;(6)Shared Nothing(完全无共享)架构;(7)私有资源。
MPP和NUMA:
相同点:首先NUMA和MPP都是由多个节点组成的;其次每个节点都有自己的CPU,内存,I/O等;都可以都过节点互联机制进行信息交互。
不同点:首先是节点互联机制不同,NUMA的节点互联是在同一台物理服务器内部实现的,MPP的节点互联是在不同的SMP服务器外部通过I/O实现的。其次是内存访问机制不同,在NUMA服务器内部,任何一个CPU都可以访问整个系统的内存,但异地内存访问的性能远远低于本地内存访问,因此,在开发应用程序时应该尽量避免异地内存访问。而在MPP服务器中,每个节点只访问本地内存,不存在异地内存访问问题。
二、MPP与批处理架构区别
相同点:
批处理架构与MPP架构都是分布式并行处理,将任务并行的分散到多个服务器和节点上,在每个节点上计算完成后,将各自部分的结果汇总在一起得到最终的结果。
不同点:
批处理架构和MPP架构的不同点可以举例来说:我们执行一个任务,首先这个任务会被分成多个task执行,对于MapReduce来说,这些tasks被随机的分配在空闲的Executor上;而对于MPP架构的引擎来说,每个处理数据的task被绑定到持有该数据切片的指定Executor上。
批处理的优势:
对于批处理架构来说,如果某个Executor执行过慢,那么这个Executor会慢慢分配到更少的task执行,批处理架构有个推测执行策略,推测出某个Executor执行过慢或者有故障,则在接下来分配task时就会较少的分配给它或者直接不分配,这样就不会因为某个节点出现问题而导致集群的性能受限。
批处理的缺陷:
任何事情都是有代价的,对于批处理而言,它的优势也造成了它的缺点,会将中间结果写入到磁盘中,这严重限制了处理数据的性能。
MPP的优势:
MPP架构不需要将中间数据写入磁盘,因为一个单一的Executor只处理一个单一的task,因此可以简单直接将数据stream到下一个执行阶段。这个过程称为pipelining,它提供了很大的性能提升。
MPP的缺陷:
对于MPP架构来说,因为task和Executor是绑定的,如果某个Executor执行过慢或故障,将会导致整个集群的性能就会受限于这个故障节点的执行速度(所谓木桶的短板效应),所以MPP架构的最大缺陷就是——短板效应。另一点,集群中的节点越多,则某个节点出现问题的概率越大,而一旦有节点出现问题,对于MPP架构来说,将导致整个集群性能受限,所以一般实际生产中MPP架构的集群节点不易过多。
举个例子来说下两种架构的数据落盘:要实现两个大表的join操作,对于批处理而言,如Spark将会写磁盘三次(第一次写入:表1根据join key进行shuffle;第二次写入:表2根据join key进行shuffle;第三次写入:Hash表写入磁盘), 而MPP只需要一次写入(Hash表写入)。这是因为MPP将mapper和reducer同时运行,而MapReduce将它们分成有依赖关系的tasks(DAG),这些task是异步执行的,因此必须通过写入中间数据共享内存来解决数据的依赖。
三、MPP应用
采用MPP架构的OLAP引擎分为两类,一类是自身不存储数据,只负责计算的引擎;一类是自身既存储数据,也负责计算的引擎。
1、只负责计算,不负责存储的引擎
1)Impala
Apache Impala是采用MPP架构的查询引擎,本身不存储任何数据,直接使用内存进行计算,兼顾数据仓库,具有实时,批处理,多并发等优点。
提供了类SQL(类Hsql)语法,在多用户场景下也能拥有较高的响应速度和吞吐量。它是由Java和C++实现的,Java提供的查询交互的接口和实现,C++实现了查询引擎部分。
Impala支持共享Hive Metastore,但没有再使用缓慢的 Hive+MapReduce 批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由 Query Planner、Query Coordinator 和 Query Exec Engine 三部分组成),可以直接从 HDFS 或 HBase 中用 SELECT、JOIN 和统计函数查询数据,从而大大降低了延迟。
Impala经常搭配存储引擎Kudu一起提供服务,这么做最大的优势是查询比较快,并且支持数据的Update和Delete。
2)Presto
Presto是一个分布式的采用MPP架构的查询引擎,本身并不存储数据,但是可以接入多种数据源,并且支持跨数据源的级联查询。Presto是一个OLAP的工具,擅长对海量数据进行复杂的分析;但是对于OLTP场景,并不是Presto所擅长,所以不要把Presto当做数据库来使用。
Presto是一个低延迟高并发的内存计算引擎。需要从其他数据源获取数据来进行运算分析,它可以连接多种数据源,包括Hive、RDBMS(Mysql、Oracle、Tidb等)、Kafka、MongoDB、Redis等。
2、既负责计算,又负责存储的引擎
(1)ClickHouse
ClickHouse是近年来备受关注的开源列式数据库,主要用于数据分析(OLAP)领域。
它自包含了存储和计算能力,完全自主实现了高可用,而且支持完整的SQL语法包括JOIN等,技术上有着明显优势。相比于hadoop体系,以数据库的方式来做大数据处理更加简单易用,学习成本低且灵活度高。当前社区仍旧在迅猛发展中,并且在国内社区也非常火热,各个大厂纷纷跟进大规模使用。
ClickHouse在计算层做了非常细致的工作,竭尽所能榨干硬件能力,提升查询速度。它实现了单机多核并行、分布式计算、向量化执行与SIMD指令、代码生成等多种重要技术。
ClickHouse从OLAP场景需求出发,定制开发了一套全新的高效列式存储引擎,并且实现了数据有序存储、主键索引、稀疏索引、数据Sharding、数据Partitioning、TTL、主备复制等丰富功能。以上功能共同为ClickHouse极速的分析性能奠定了基础。
(2)Doris
Doris是百度主导的,根据Google Mesa论文和Impala项目改写的一个大数据分析引擎,是一个海量分布式 KV 存储系统,其设计目标是支持中等规模高可用可伸缩的 KV 存储集群。
Doris可以实现海量存储,线性伸缩、平滑扩容,自动容错、故障转移,高并发,且运维成本低。部署规模,建议部署4-100+台服务器。
Doris3 的主要架构:DT(Data Transfer)负责数据导入、DS(Data Seacher)模块负责数据查询、DM(Data Master)模块负责集群元数据管理,数据则存储在 Armor 分布式 Key-Value 引擎中。Doris3 依赖 ZooKeeper 存储元数据,从而其他模块依赖 ZooKeeper 做到了无状态,进而整个系统能够做到无故障单点。
(3)Druid
Druid是一个开源、分布式、面向列式存储的实时分析数据存储系统。
Druid的关键特性如下:
亚秒级的OLAP查询分析:采用了列式存储、倒排索引、位图索引等关键技术;在亚秒级别内完成海量数据的过滤、聚合以及多维分析等操作;实时流数据分析:Druid提供了实时流数据分析,以及高效实时写入;实时数据在亚秒级内的可视化;丰富的数据分析功能:Druid提供了友好的可视化界面;SQL查询语言;高可用性与高可拓展性:Druid工作节点功能单一,不相互依赖;Druid集群在管理、容错、灾备、扩容都很容易;
(4)TiDB
TiDB 是 PingCAP 公司自主设计、研发的开源分布式关系型数据库,是一款同时支持OLTP与OLAP的融合型分布式数据库产品。
TiDB 兼容 MySQL 5.7 协议和 MySQL 生态等重要特性。目标是为用户提供一站式 OLTP 、OLAP 、HTAP 解决方案。TiDB 适合高可用、强一致要求较高、数据规模较大等各种应用场景。
(5) Greenplum
Greenplum 是在开源的 PostgreSQL 的基础上采用了MPP架构的性能非常强大的关系型分布式数据库。为了兼容Hadoop生态,又推出了HAWQ,分析引擎保留了Greenplum的高性能引擎,下层存储不再采用本地硬盘而改用HDFS,规避本地硬盘可靠性差的问题,同时融入Hadoop生态。
3、常用的引擎对比
Reference
https://www.jianshu.com/p/060...
https://blog.csdn.net/wylfeng...
https://zhuanlan.zhihu.com/p/...
https://www.eefocus.com/embed...