默认是NONE 是否使用布隆过虑及使用何种方式
布隆过滤可以每列族单独启用。
使用 HColumnDescriptor.setBloomFilterType(NONE | ROW | ROWCOL)
对列族单独启用布隆。
默认是1 这个参数的意思是数据保留1个 版本,如果认为我们的老版本数据对我们毫无价值不需要保留这么多,且更新频繁,那将此参数设为1 能节约2/3的空间。
使用方法: create 'table',{VERSIONS=>'2'}
附:MIN_VERSIONS => ‘0’是说在compact操作执行之后,至少要保留的版本
默认值是NONE 即不使用压缩
这个参数意思是该列族是否采用压缩,采用什么压缩算法
使用方法: create 'table',{NAME=>'info',COMPRESSION=>'SNAPPY'}
建议采用SNAPPY压缩算法
HBase中,在Snappy发布之前(Google 2011年对外发布Snappy),采用的LZO算法,目标是达到尽可能快的压缩和解压速度,同时减少对CPU的消耗;
在Snappy发布之后,建议采用Snappy算法(参考《HBase: The Definitive Guide》),具体可以根据实际情况对LZO和Snappy做过更详细的对比测试后再做选择。
Algorithm | remaining | Encoding | Decoding |
---|---|---|---|
GZIP | 13.4% | 21 MB/s | 118 MB/s |
LZO | 20.5% | 135 MB/s | 410 MB/s |
Zippy/Snappy | 22.2% | 172 MB/s | 409 MB/s |
如果建表之初没有压缩,后来想要加入压缩算法,可以通过alter修改schema
使用方法:
如 修改压缩算法
disable 'table'
alter 'table',{NAME=>'info',COMPRESSION=>'snappy'}
enable 'table'
但是需要执行major_compact 'table'
命令之后 才会做实际的操作。
默认是 2147483647 即:Integer.MAX_VALUE 值大概是68年
这个参数是说明该列族数据的存活时间,单位是s
这个参数可以根据具体的需求对数据设定存活时间,超过存过时间的数据将在表中不在显示,待下次major compact的时候再彻底删除数据.
注意的是TTL设定之后 MIN_VERSIONS=>’0’ 这样设置之后,TTL时间戳过期后,将全部彻底删除该family下所有的数据,如果MIN_VERSIONS 不等于0那将保留最新的MIN_VERSIONS个版本的数据,其它的全部删除,比如MIN_VERSIONS=>’1’ 届时将保留一个最新版本的数据,其它版本的数据将不再保存。
这个命令查看了create table 的各项参数或者是默认值。
disable_all 支持正则表达式,并列出当前匹配的表的如下:
toplist_a_total_1001
toplist_a_total_1002
toplist_a_total_1008
toplist_a_total_1009
toplist_a_total_1019
toplist_a_total_1035
…
Disable the above 25 tables (y/n)? 并给出确认提示.
这个命令和disable_all的使用方式是一样的
默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户端都向这一个region写数据,直到这个region足够大了才进行切分。一种可以加快批量写入速度的方法是通过预先创建一些空的regions,这样当数据写入HBase时,会按照region分区情况,在集群内做数据的负载均衡。
命令方式:
create 't1', 'f1', {NUMREGIONS => 15, SPLITALGO => 'HexStringSplit'}
也可以使用api的方式:
bin/hbase org.apache.hadoop.hbase.util.RegionSplitter test_table HexStringSplit -c 15 -f info
参数:
可在Web上查看结果,如图:
这样就可以将表预先分为15个区,减少数据达到storefile 大小的时候自动分区的时间消耗,并且还有以一个优势,就是合理设计rowkey 能让各个region 的并发请求平均分配(趋于均匀) 使IO 效率达到最高,但是预分区需要将filesize 设置一个较大的值,hbase.hregion.max.filesize 这个值默认是10G 也就是说单个region 默认大小是10G,
这个参数的默认值在0.90 到0.92到0.94.3各版本的变化:256M–1G–10G
但是如果MapReduce Input类型为TableInputFormat 使用hbase作为输入的时候,就要注意了,每个region一个map,如果数据小于10G 那只会启用一个map 造成很大的资源浪费,这时候可以考虑适当调小该参数的值,或者采用预分配region的方式,并将检测如果达到这个值,再手动分配region。
表结构设计
以用户信息为例,可以将必须的基本信息存放在一个列族,而一些附加的额外信息可以放在另一列族;
语音详单:
13877889988-20150625
13877889988-20150625
13877889988-20150626
13877889988-20150626
—-将需要批量查询的数据尽可能连续存放
CMS系统—多条件查询
尽可能将查询条件关键词拼装到rowkey中,查询频率最高的条件尽量往前靠
20150230-zhangsan-category…
20150230-lisi-category…
Category+20150230 20150230-zhangsan-category
(每一个条件的值长度不同,可以通过做定长映射来提高效率)
HBase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度可以对HBase中的数据进行快速定位。
HBase中rowkey可以唯一标识一行记录,有以下3种查询方式:
rowkey是一个二进制码流,可以是任意字符串,最大长度64kb,实际应用中一般为10-100bytes,以byte[]形式保存,一般设计成定长。
建议越短越好,不要超过16个字节,原因如下:
如果rowkey按照时间戳的方式递增,不要将时间放在二进制码的前面,建议将rowkey的高位作为散列字段,由程序随机生成,低位放时间字段,这样将提高数据均衡分布在每个RegionServer,以实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息,所有的数据都会集中在一个RegionServer上,这样在数据检索的时候负载会集中在个别的RegionServer上,造成热点问题,会降低查询效率。
必须在设计上保证其唯一性,rowkey是按照字典顺序排序存储的,因此,设计rowkey的时候,要充分利用这个排序的特点,将经常读取的数据存储到一块,将最近可能会被访问的数据放到一块。
HBase中的行是按照rowkey的字典顺序排序的,这种设计优化了scan操作,可以将相关的行以及会被一起读取的行存取在临近位置,便于scan。然而糟糕的rowkey设计是热点的源头。
热点发生在大量的client直接访问集群的一个或极少数个节点(访问可能是读,写或者其他操作)。大量访问会使热点region所在的单个机器超出自身承受能力,引起性能下降甚至region不可用,这也会影响同一个RegionServer上的其他region,由于主机无法服务其他region的请求。
设计良好的数据访问模式以使集群被充分,均衡的利用。为了避免写热点,设计rowkey使得不同行在同一个region,但是在更多数据情况下,数据应该被写入集群的多个region,而不是一个。
下面是一些常见的避免热点的方法以及它们的优缺点
这里所说的加盐不是密码学中的加盐,而是在rowkey的前面增加随机数,具体就是给rowkey分配一个随机前缀以使得它和之前的rowkey的开头不同。分配的前缀种类数量应该和你想使用数据分散到不同的region的数量一致。加盐之后的rowkey就会根据随机生成的前缀分散到各个region上以避免热点。
哈希会使同一行永远用一个前缀加盐。哈希也可以使负载分散到整个集群,但是读却是可以预测的。使用确定的哈希可以让客户端重构完整的rowkey,可以使用get操作准确获取某一个行数据。
第三种防止热点的方法是反转固定长度或者数字格式的rowkey。这样可以使得rowkey中经常改变的部分(最没有意义的部分)放在前面。这样可以有效的随机rowkey,但是牺牲了rowkey的有序性。
反转rowkey的例子以手机号为rowkey,可以将手机号反转后的字符串作为rowkey,这样的就避免了以手机号那样比较固定开头导致热点问题。
一个常见的数据处理问题是快速获取数据的最近版本,使用反转的时间戳作为rowkey的一部分对这个问题十分有用,可以用 Long.Max_Value - timestamp 追加到key的末尾,例如 [key][reverse_timestamp] , [key] 的最新值可以通过scan [key]获得[key]的第一条记录,因为HBase中rowkey是有序的,第一条记录是最后录入的数据。
比如需要保存一个用户的操作记录,按照操作时间倒序排序,在设计rowkey的时候,可以这样设计:
[userId反转][Long.Max_Value - timestamp],在查询用户的所有操作记录数据的时候,直接指定反转后的userId,startRow是[userId反转][000000000000],stopRow是[userId反转][Long.Max_Value - timestamp]
如果需要查询某段时间的操作记录,startRow是[user反转][Long.Max_Value - 起始时间],stopRow是[userId反转][Long.Max_Value - 结束时间]
注意:
尽量减少行和列的大小在HBase中,value永远和它的key一起传输的。当具体的值在系统间传输时,它的rowkey,列名,时间戳也会一起传输。如果你的rowkey和列名很大,甚至可以和具体的值相比较,那么你将会遇到一些有趣的问题。HBase storefiles中的索引(有助于随机访问)最终占据了HBase分配的大量内存,因为具体的值和它的key很大。可以增加block大小使得storefiles索引再更大的时间间隔增加,或者修改表的模式以减小rowkey和列名的大小。压缩也有助于更大的索引。
列族尽可能越短越好,最好是一个字符。
冗长的属性名虽然可读性好,但是更短的属性名存储在HBase中会更好。