Java实现 LeetCode 188 买卖股票的最佳时机 IV

188. 买卖股票的最佳时机 IV

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: [2,4,1], k = 2
输出: 2
解释: 在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:

输入: [3,2,6,5,0,3], k = 2
输出: 7
解释: 在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

class Solution {
    public int maxProfit(int k, int[] prices) {
        /**
        当k大于等于数组长度一半时, 问题退化为贪心问题此时采用 买卖股票的最佳时机 II
        的贪心方法解决可以大幅提升时间性能, 对于其他的k, 可以采用 买卖股票的最佳时机 III
        的方法来解决, 在III中定义了两次买入和卖出时最大收益的变量, 在这里就是k租这样的
        变量, 即问题IV是对问题III的推广, t[i][0]和t[i][1]分别表示第i比交易买入和卖出时
        各自的最大收益
        **/
        if(k < 1) return 0;
        if(k >= prices.length/2) return greedy(prices);
        int[][] t = new int[k][2];
        for(int i = 0; i < k; ++i)
            t[i][0] = Integer.MIN_VALUE;
        for(int p : prices) {
            t[0][0] = Math.max(t[0][0], -p);
            t[0][1] = Math.max(t[0][1], t[0][0] + p);
            for(int i = 1; i < k; ++i) {
                //前面变了,和后面慢慢比,买不买都行,但我只能比k-1次
                t[i][0] = Math.max(t[i][0], t[i-1][1] - p);
                t[i][1] = Math.max(t[i][1], t[i][0] + p);
            }
        }
        return t[k-1][1];
    }
    
    private int greedy(int[] prices) {
        int max = 0;
        for(int i = 1; i < prices.length; ++i) {
            if(prices[i] > prices[i-1])
                max += prices[i] - prices[i-1];
        }
        return max;
    }
}

你可能感兴趣的:(LeetCode,动态规划,买卖股票的最佳时机,IV)