前言
本篇的文章是基于Rxjava 2.1.2。从下面的一段代码中,我们从源码的角度分析 RxJava 的实现原理:
ObservableOnSubscribe oos = new ObservableOnSubscribe() {
@Override
public void subscribe(ObservableEmitter e) throws Exception {
final int max = 100;
for (int i = 1; i <= max; i++) {
e.onNext(max);
}
e.onComplete();
}
};
Observer o = new Observer() {
@Override
public void onSubscribe(Disposable d) {
}
@Override
public void onNext(Integer integer) {
}
@Override
public void onError(Throwable e) {
}
@Override
public void onComplete() {
}
};
Observable.create(oos)
.observeOn(AndroidSchedulers.mainThread())
.subscribeOn(Schedulers.computation())
.subscribe(o);
分析源码之前,我们先定义一下名词,RxJava 是基于观察者模式的,这里将被观察者叫做主题(Source),观察者叫做观察者(Observer)。
上面的代码首先创建了一个主题对象,然后又创建了一个观察者对象,最后将两者关联起来,并且最重要的一点,指定了主题对象和观察者对象执行的线程。
正文
Observable.create(oos)
首先分析这行代码做了什么事情:
public static Observable create(ObservableOnSubscribe source) {
ObjectHelper.requireNonNull(source, "source is null");
return RxJavaPlugins.onAssembly(new ObservableCreate(source));
}
ObjectHelper 只是用来做非空判断,这里就不用管它了。看看 RxJavaPlugins 做了什么:
/**
* Calls the associated hook function.
* @param the value type
* @param source the hook's input value
* @return the value returned by the hook
*/
@SuppressWarnings({ "rawtypes", "unchecked" })
@NonNull public static Observable onAssembly(@NonNull Observable source) {
Function super Observable, ? extends Observable> f = onObservableAssembly;
if (f != null) {
return apply(f, source);
}
return source;
注释上都说了,这是一个钩子函数,也就是说如果 onObservableAssembly 的值不为空,那么就调用这个钩子函数,onObservableAssembly 是一个静态变量,需要我们主动的去设置才会赋值,这里当做空来考虑,如果 onObservableAssembly 为空的话,也就是说这个方法啥都没做,直接返回 source 参数,也就是上面的 ObservableCreate 对象。
总结一下,Observable.create(oos) 只是创建了一个 ObservableCreate 对象。这个方法就暂时先分析到这里,至于这个对象内部有什么东西,我们后面会说到。
observeOn(AndroidSchedulers.mainThread())
既然之前的 create 方法创建了一个 ObservableCreate 对象并返回,也就是说 observeOn(Schedulers.computation()) 这个方法是调用的 ObservableCreate 这个对象上的方法。
public final class ObservableCreate extends Observable {
ObservableCreate 是继承至 Observable 的。
public final Observable observeOn(Scheduler scheduler) {
return observeOn(scheduler, false, bufferSize());
}
Observable 的 observeOn 是 final 的,所以走的父类的方法。继续跟踪 observeOn 调用的同名方法:
public final Observable observeOn(Scheduler scheduler, boolean delayError, int bufferSize) {
ObjectHelper.requireNonNull(scheduler, "scheduler is null");
ObjectHelper.verifyPositive(bufferSize, "bufferSize");
return RxJavaPlugins.onAssembly(new ObservableObserveOn(this, scheduler, delayError, bufferSize));
}
ObjectHelper 跳过。这里又是一个 onAssembly 方法的调用,我很好奇这个单词是什么意思。点进去看一下:
public static Observable onAssembly(@NonNull Observable source) {
Function super Observable, ? extends Observable> f = onObservableAssembly;
if (f != null) {
return apply(f, source);
}
return source;
}
同样是一个钩子方法,现在也是有经验的人呢,再看到这个方法,就直接跳过,只关心它传递的参数和返回值就行了。它的返回值默认就是传递进来的参数。
所以,observeOn 方法就是创建并返回了一个 ObservableObserveOn 对象(大神教你起类名系列二),这里预警一下,之后像这样类似的类名差不多还有3个。
subscribeOn(Schedulers.computation())
由于 observeOn 创建并返回了一个 ObservableObserveOn 对象,所以这里调用的是 ObservableObserveOn 对象上的方法。
public final class ObservableObserveOn extends AbstractObservableWithUpstream {
abstract class AbstractObservableWithUpstream extends Observable implements HasUpstreamObservableSource {
也是继承至 Observable 。
public final Observable subscribeOn(Scheduler scheduler) {
ObjectHelper.requireNonNull(scheduler, "scheduler is null");
return RxJavaPlugins.onAssembly(new ObservableSubscribeOn(this, scheduler));
}
不出意料,也是 final 的,创建了一个 ObservableSubscribeOn 对象(大神教你起类名系列三)并返回。
subscribe(o)
前面 subscribeOn 创建了一个 ObservableSubscribeOn 对象并返回,所以这里调用的是 ObservableSubscribeOn 这个对象上面的方法。
public final class ObservableSubscribeOn extends AbstractObservableWithUpstream {
abstract class AbstractObservableWithUpstream extends Observable implements HasUpstreamObservableSource {
继承至 Observable 类。
public final void subscribe(Observer super T> observer) {
ObjectHelper.requireNonNull(observer, "observer is null");
try {
observer = RxJavaPlugins.onSubscribe(this, observer);
ObjectHelper.requireNonNull(observer, "Plugin returned null Observer");
subscribeActual(observer);
} catch (NullPointerException e) { // NOPMD
throw e;
} catch (Throwable e) {
Exceptions.throwIfFatal(e);
// can't call onError because no way to know if a Disposable has been set or not
// can't call onSubscribe because the call might have set a Subscription already
RxJavaPlugins.onError(e);
NullPointerException npe = new NullPointerException("Actually not, but can't throw other exceptions due to RS");
npe.initCause(e);
throw npe;
}
}
这个方法也是 final 的,所以是调用的这个方法。
public final void subscribe(Observer super T> observer) { … }
这个方法是我们需要分析的重点,看看内部具体的代码吧先:
public final void subscribe(Observer super T> observer) {
ObjectHelper.requireNonNull(observer, "observer is null");
try {
observer = RxJavaPlugins.onSubscribe(this, observer);
ObjectHelper.requireNonNull(observer, "Plugin returned null Observer");
subscribeActual(observer);
} catch (NullPointerException e) { // NOPMD
throw e;
} catch (Throwable e) {
Exceptions.throwIfFatal(e);
// can't call onError because no way to know if a Disposable has been set or not
// can't call onSubscribe because the call might have set a Subscription already
RxJavaPlugins.onError(e);
NullPointerException npe = new NullPointerException("Actually not, but can't throw other exceptions due to RS");
npe.initCause(e);
throw npe;
}
}
这里忽略 ObjectHelper 和异常处理的代码只有两行代码是关键。先看 observer = RxJavaPlugins.onSubscribe(this, observer):
public static Observer super T> onSubscribe(@NonNull Observable source, @NonNull Observer super T> observer) {
BiFunction super Observable, ? super Observer, ? extends Observer> f = onObservableSubscribe;
if (f != null) {
return apply(f, source, observer);
}
return observer;
}
没想到啊没想到,你这浓眉大眼的家伙也是一个钩子方法。所以这行代码相当于 obsever = observer。接着看,subscribeActual(observer):
protected abstract void subscribeActual(Observer super T> observer);
这是一个抽象方法,没啥好分析的。接下来我们要进入正题了,根据我们编写的代码,是 ObservableSubscribeOn 这个对象调用了 subscribe 方法,所以我们看看这个类的 subscribeActual 方法。
@Override
public void subscribeActual(final Observer super T> s) {
final SubscribeOnObserver parent = new SubscribeOnObserver(s);
s.onSubscribe(parent);
parent.setDisposable(scheduler.scheduleDirect(new SubscribeTask(parent)));
}
这里需要注意的是 s 这个参数,后面会有很多地方看到这个参数,一定要搞清楚这个参数是谁传递过来的。比如说:
A.subscribe(B)
那么,参数 s 就是 B。
在我们的代码中是 ObservableSubscribeOn.subscribe(o); 理解了这一点,我们详细分析代码里面的内容:首先创建了一个 SubscribeOnObserver (大神教你起类名系列四)。然后调用了我们创建的对象 o 的 onSubscribe 方法:
@Override
public void onSubscribe(Disposable d) {
}
我们的 onSubscribe 方法里面啥都没做。不过一般来说,你应该调用一下 onStart 方法。
接下来是调用 parent.setDisposable(scheduler.scheduleDirect(new SubscribeTask(parent)));,setDisposable 的方法不影响流程分析,这里就先跳过了,有兴趣的可以点进去看一下。然后就是 scheduler 变量,这个变量就是我们使用 subscribeOn 传递的参数:
public final Observable subscribeOn(Scheduler scheduler) {
ObjectHelper.requireNonNull(scheduler, "scheduler is null");
return RxJavaPlugins.onAssembly(new ObservableSubscribeOn(this, scheduler));
}
public ObservableSubscribeOn(ObservableSource source, Scheduler scheduler) {
super(source);
this.scheduler = scheduler;
}
这个 scheduler 就是 Schedulers.computation()。然后调用了它的 scheduleDirect 方法:
public Disposable scheduleDirect(@NonNull Runnable run) {
return scheduleDirect(run, 0L, TimeUnit.NANOSECONDS);
}
public Disposable scheduleDirect(@NonNull Runnable run, long delay, @NonNull TimeUnit unit) {
final Worker w = createWorker();
final Runnable decoratedRun = RxJavaPlugins.onSchedule(run);
DisposeTask task = new DisposeTask(decoratedRun, w);
w.schedule(task, delay, unit);
return task;
}
这两个方法是父类的,Schedulers.computation() 返回的是一个 ComputationScheduler 对象,这里找具体的实现类由于调用链比较长,就不给出了,自己点着点着就能找到了。看看 ComputationScheduler 有没有复写这两个方法:
@NonNull
@Override
public Disposable scheduleDirect(@NonNull Runnable run, long delay, TimeUnit unit) {
PoolWorker w = pool.get().getEventLoop();
return w.scheduleDirect(run, delay, unit);
}
它覆盖了父类的第2个 scheduleDirect 方法。这里就不深入分析里面的池了。看 w.scheduleDirect(run, delay, unit);:
public Disposable scheduleDirect(final Runnable run, long delayTime, TimeUnit unit) {
ScheduledDirectTask task = new ScheduledDirectTask(RxJavaPlugins.onSchedule(run));
try {
Future> f;
if (delayTime <= 0L) {
f = executor.submit(task);
} else {
f = executor.schedule(task, delayTime, unit);
}
task.setFuture(f);
return task;
} catch (RejectedExecutionException ex) {
RxJavaPlugins.onError(ex);
return EmptyDisposable.INSTANCE;
}
}
熟悉的线程池使用代码。希望看到这里你还没有忘记我们要分析的是什么。简单的归纳一下,其实就是向我们创建的 scheduler 里面提交了一个 runnable。最终这个 Runnable 肯定会执行,那么看看这个 Runnable 里面有什么代码:
parent.setDisposable(scheduler.scheduleDirect(new SubscribeTask(parent)));
final class SubscribeTask implements Runnable {
private final SubscribeOnObserver parent;
SubscribeTask(SubscribeOnObserver parent) {
this.parent = parent;
}
@Override
public void run() {
source.subscribe(parent);
}
}
run 方法里面就只有一句代码,但是我们需要搞清楚这里的 source 和 parent 分别是哪个对象。
parent 可以直接看到是 SubscribeOnObserver 对象。
source 是使用的外部类的变量。
public ObservableSubscribeOn(ObservableSource source, Scheduler scheduler) {
super(source);
this.scheduler = scheduler;
}
这里调用了 super 方法,所以构造函数里传递的变量就是 source。
public final Observable subscribeOn(Scheduler scheduler) {
ObjectHelper.requireNonNull(scheduler, "scheduler is null");
return RxJavaPlugins.onAssembly(new ObservableSubscribeOn(this, scheduler));
}
这里是我们之前分析过的创建 ObservableSubscribeOn 的代码,这里的 this 指的是 observeOn 创建的 ObservableObserveOn 对象。希望看到这里你没有搞晕,如果你是使用手机看的,并且看懂了,我是真的佩服。
也就是说,run 里面的代码就是调用了 ObservableObserveOn 对象的 subscribe 方法。之前我们分析过了,subscribe 方法实际上没有做什么,只是调用了 subscribeActual 方法,所以我们进入这个类内部看看:
@Override
protected void subscribeActual(Observer super T> observer) {
if (scheduler instanceof TrampolineScheduler) {
source.subscribe(observer);
} else {
Scheduler.Worker w = scheduler.createWorker();
source.subscribe(new ObserveOnObserver(observer, w, delayError, bufferSize));
}
}
我们在 observeOn 传递的 scheduler 不是 TrampolineScheduler 类型的,所以只需要看 else 的代码。这里是先创建了一个工作线程(由于我们使用的是 AndroidScheduler,所以这里是指的主线程),然后调用了 source 的 subscribe 方法。需要注意的是这里最后创建了一个 ObserveOnObserver 对象(大神教你起类名系列五)。
先看看 createWork,在 HandlerScheduler 中:
@Override
public Worker createWorker() {
return new HandlerWorker(handler);
}
返回了一个 HandlerWorker 对象。再看 source.subscribe(),首先这里的 source 指的是 create 方法创建的 ObservableCreate 对象,调用 subscribe 传递的是 ObserveOnObserver。看看这个对象的 subscribeActual 方法:
@Override
protected void subscribeActual(Observer super T> observer) {
CreateEmitter parent = new CreateEmitter(observer);
observer.onSubscribe(parent);
try {
source.subscribe(parent);
} catch (Throwable ex) {
Exceptions.throwIfFatal(ex);
parent.onError(ex);
}
}
这里的参数 observer 是 ObserveOnObserver,source 是我们代码中创建的 oos 对象。
首先创建了一个 CreateEmitter 对象。接着看 ObserveOnObserver 的 onSubscribe 方法做了啥:
@Override
public void onSubscribe(Disposable s) {
if (DisposableHelper.validate(this.s, s)) {
this.s = s;
if (s instanceof QueueDisposable) {
@SuppressWarnings("unchecked")
QueueDisposable qd = (QueueDisposable) s;
int m = qd.requestFusion(QueueDisposable.ANY | QueueDisposable.BOUNDARY);
if (m == QueueDisposable.SYNC) {
sourceMode = m;
queue = qd;
done = true;
actual.onSubscribe(this);
schedule();
return;
}
if (m == QueueDisposable.ASYNC) {
sourceMode = m;
queue = qd;
actual.onSubscribe(this);
return;
}
}
queue = new SpscLinkedArrayQueue(bufferSize);
actual.onSubscribe(this);
}
}
这里代码比较长,只分析重要的代码,就是 actual.onSubscribe 这句。actual 是构造函数中赋值的,所以我们回到创建 ObserveOnObserver 的地方,actual 指的是 SubscribeOnObserver 对象。所以它调用了 SubscribeOnObserver 的 onSubscribe 方法。接下来分析一下它的 onSubscribe 方法做了什么,这里不看也不会影响流程。
SubscribeOnObserver(Observer super T> actual) {
this.actual = actual;
this.s = new AtomicReference();
}
@Override
public void onSubscribe(Disposable s) {
DisposableHelper.setOnce(this.s, s);
}
这个方法调用了 setOnce 方法:
public static boolean setOnce(AtomicReference field, Disposable d) {
ObjectHelper.requireNonNull(d, "d is null");
if (!field.compareAndSet(null, d)) {
d.dispose();
if (field.get() != DISPOSED) {
reportDisposableSet();
}
return false;
}
return true;
}
这里涉及到了乐观锁等玩意,简单来说就是先判断 field 的值是否为空,如果为空则设置为 d,不为空则将 d dispose。然后判断 field 的值,由于 field 的值只能设定一次非 DISPOSED 值,所以如果不为 DISPOSED,说明已经被设置过了,再报出异常,如果为 DISPOSED 是可以再次设置的。按照正常的流程,这里只是将 field 的值设置为 d,然后返回true。这个方法可以先不用管。
回到主线流程上,source.subscribe(parent); 这是最重要的一句代码。source 是在构造函数赋值的,看看构造方法:
public static Observable create(ObservableOnSubscribe source) {
ObjectHelper.requireNonNull(source, "source is null");
return RxJavaPlugins.onAssembly(new ObservableCreate(source));
}
也就是说这里的 source 是我们代码中创建的 oos 对象。parent 是新创建的 CreateEmitter 对象。看看我们 oos 的 subscribe 方法:
@Override
public void subscribe(ObservableEmitter e) throws Exception {
Log.e("aprz", Thread.currentThread().getName());
final int max = 100;
for (int i = 1; i <= max; i++) {
e.onNext(i);
}
e.onComplete();
}
这里就是事件开始的起点。所有的事件都由 ObservableEmitter 开始发送,看看它的代码,它是一个接口,在我们的例子中,它的实现类是 CreateEmitter,所有我们分析这个类的 onNext 方法:
@Override
public void onNext(T t) {
if (t == null) {
onError(new NullPointerException("onNext called with null. Null values are generally not allowed in 2.x operators and sources."));
return;
}
if (!isDisposed()) {
observer.onNext(t);
}
}
isDisposed 方法返回 false 才会去调用 observer 的 onNext 方法,这个 observer 是谁呢? 看到这里我们就要从后往前推一遍之前的代码了,不管你绝不绝望,反正我是很绝望。这的 observer 是 ObserveOnObserver 对象。
接下来我们就进入 ObserveOnObserver 里面,看看它接受事件之后做了什么,上面的参数 e 就是:
@Override
public void onNext(T t) {
if (done) {
return;
}
if (sourceMode != QueueDisposable.ASYNC) {
queue.offer(t);
}
schedule();
}
调用了 schedule 方法:
void schedule() {
if (getAndIncrement() == 0) {
worker.schedule(this);
}
}
向 work 中提交了一个 Runnable,这里传递的是 this。说明它自己肯定实现了这个接口,我们看看它的 run 方法做了啥:
@Override
public void run() {
if (outputFused) {
drainFused();
} else {
drainNormal();
}
}
这里一般是走 drainNormal 吧,我猜的,我们分析这个方法吧。
void drainNormal() {
int missed = 1;
final SimpleQueue q = queue;
final Observer super T> a = actual;
for (;;) {
if (checkTerminated(done, q.isEmpty(), a)) {
return;
}
for (;;) {
boolean d = done;
T v;
try {
v = q.poll();
} catch (Throwable ex) {
Exceptions.throwIfFatal(ex);
s.dispose();
q.clear();
a.onError(ex);
worker.dispose();
return;
}
boolean empty = v == null;
if (checkTerminated(d, empty, a)) {
return;
}
if (empty) {
break;
}
a.onNext(v);
}
missed = addAndGet(-missed);
if (missed == 0) {
break;
}
}
}
代码很长,具体做了啥我们暂时不用关心,只需要注意到 a.onNexe(v) 这行代码,这个 a 是 actual 变量,actual 又是 SubscribeOnObserver 对象,我们看看它的 onNext 方法:
@Override
public void onNext(T t) {
actual.onNext(t);
}
很简单,这里的 actual 就是我们创建的 o 了,所以最终调用到了我们的代码里面。
好了,到这里一个完整的流程就整理出来了,但是还有一个问题没有解决,就是线程切换是发生在哪里。因为为了不影响整体流程的分析,所以上面并没有去分析线程切换的东西,下面开始分析。
直接从 subscribeOn 开始,看 ObservableSubscribeOn 的代码:
@Override
public void subscribeActual(final Observer super T> s) {
final SubscribeOnObserver parent = new SubscribeOnObserver(s);
s.onSubscribe(parent);
parent.setDisposable(scheduler.scheduleDirect(new SubscribeTask(parent)));
}
从这里开始就进行了线程的切换,根据上面的分析我们知道这里是将 SubscribeTask 作为一个 Runnable 对象给提交进了我们指定的 scheduler (subscribeOn 传递的)中。所以后面的流程都是在 scheduler 所在的线程在运行。
再看 observeOn,看 ObservableObserveOn 的代码。
@Override
protected void subscribeActual(Observer super T> observer) {
if (scheduler instanceof TrampolineScheduler) {
source.subscribe(observer);
} else {
Scheduler.Worker w = scheduler.createWorker();
source.subscribe(new ObserveOnObserver(observer, w, delayError, bufferSize));
}
}
这里的线程切换是发生在 ObserveOnObserver 这个对象的里面。
void schedule() {
if (getAndIncrement() == 0) {
worker.schedule(this);
}
}
schedule 的流程,我们上面分析过,worker.schedule(this) 这行代码就发生了线程切换,是将 this 作为 Runnable 对象提交到了我们指定的(observerOn 传递的)scheduler 中。具体分析,由于之前的流程是在别的线程中,所以想要进行线程切换,最先想到的肯定是 Handler。由于我们传递的是 AndroidSchedulers.mainThread(),所以我们就分析这个吧。
AndroidSchedulers.mainThread() 的实现是 HandlerScheduler。看看它的 schedule 方法:
@Override
public Disposable schedule(Runnable run, long delay, TimeUnit unit) {
if (run == null) throw new NullPointerException("run == null");
if (unit == null) throw new NullPointerException("unit == null");
if (disposed) {
return Disposables.disposed();
}
run = RxJavaPlugins.onSchedule(run);
ScheduledRunnable scheduled = new ScheduledRunnable(handler, run);
Message message = Message.obtain(handler, scheduled);
message.obj = this; // Used as token for batch disposal of this worker's runnables.
handler.sendMessageDelayed(message, Math.max(0L, unit.toMillis(delay)));
// Re-check disposed state for removing in case we were racing a call to dispose().
if (disposed) {
handler.removeCallbacks(scheduled);
return Disposables.disposed();
}
return scheduled;
}
post 了一个 msg,这样就完成了线程的切换。下面上一张图,有助于理解和记忆:
只需要理解,每次 observerOn 和 subscribeOn 的时候,内部都会创建一个新的 observable 和 observer。
。新创建的 observable 会引用前面的 observable,就是代码中我们分析的 source 变量。
。新创建的 observer 会引用前面的 observer,就是代码中我们分析的 actual 变量。
最后我们 subscribe 的时候,是调用的最后创建的 observable 的方法。而每个 observable 内部又调用了 source 的 subscribe 方法,这样就形成了一层一层往前传递的调用链。当调用到最前面的一个 observable 的时候,就是我们自己创建的 observable,在这里我们需要手动触发该与该 observable 对应的 observer 对象的 onNext 方法。而 observer 的 onNext 方法的内部又调用了 actual 的 onNext 方法,这样就形成了一层一层往后传递的调用链。
总结
虽然在我们的例子中,CreateEmitter 并不是一个 observer ,但是它也有 onNext 等方法,可以把它看做一个 observer。
如此,RxJava 的一个流程就理清楚了。这货的流程和 OkHttp 怎么有点像,只是稍微有点不一样。
补充一下关于背压的知识:在异步订阅的时候,使用 Observable,默认的缓冲大小是 128,超过 这个数量之后会 resize,也就是说会缓冲所有的事件,这样就会导致内存占用一直增加。
结语:后续会持续更新哦,喜欢的话点赞关注一下吧。
相关视频
【Android进阶】Rxjava与low响应式编程