题意:1-n围成1圈,从1出发,第i次走a[i]步,问走m次后出现在[L,R]的概率L<=R。
思路:明显的DP,把编号变成0~n-1,令dp[i][j]表示走完i步之前停在了j上,则有dp[i][j] * 0.5 -> dp[i+1][(j+a[i])%n] 和 dp[i+1][(j-a[i]+n*a[i])%n]。由于取模运算的大量存在,直接算会TLE,需要预处理取模的结果。时间复杂度O(nm)。
代码1:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <vector>
using
namespace
std;
typedef
long
long
LL;
#define mem0(a) memset(a, 0, sizeof(a))
double
dp[2][234];
int
mod1[234][234], mod2[234][234];
int
a[1234567];
int
main() {
#ifndef ONLINE_JUDGE
freopen
(
"in.txt"
,
"r"
, stdin);
#endif // ONLINE_JUDGE
int
n, m, l, r;
while
(cin >> n >> m >> l >> r, n) {
for
(
int
i = 0; i < m; i ++)
scanf
(
"%d"
, a + i);
mem0(dp);
dp[0][0] = 1;
for
(
int
i = 0; i < 201; i ++) {
for
(
int
j = 0; j < 201; j ++) {
mod1[i][j] = (i + j) % n;
mod2[i][j] = (i - j + n * j) % n;
}
}
int
cur = 1;
for
(
int
i = 0; i < m; i ++) {
for
(
int
j = 0; j < n; j ++) {
dp[cur][mod1[j][a[i]]] += dp[cur ^ 1][j] * 0.5;
dp[cur][mod2[j][a[i]]] += dp[cur ^ 1][j] * 0.5;
}
cur ^= 1;
mem0(dp[cur]);
}
double
ans = 0;
for
(
int
i = l - 1; i < r; i ++) {
ans += dp[cur ^ 1][i];
}
printf
(
"%.4f\n"
, ans);
}
return
0;
}
|
另一个思路(没A,应该是精度问题):m次走的顺序是不会影响最终的结果的,所以考虑把相同的步数和并,由于步数范围在1-100,所以把m次走的过程分为了最多100个阶段,如果我们预处理每个阶段从0到任意点的概率(最多n个) ,那么就可以在O(1)的时间完成点到点的转移。时间复杂度变成O(m + k * n * n).
代码2:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <vector>
using
namespace
std;
typedef
long
long
LL;
#define mem0(a) memset(a, 0, sizeof(a))
int
cnt[123];
double
p[123][234], dp[123][234];
int
main() {
#ifndef ONLINE_JUDGE
freopen
(
"in.txt"
,
"r"
, stdin);
#endif // ONLINE_JUDGE
int
n, m, l, r;
while
(cin >> n >> m >> l >> r, n) {
mem0(cnt);
mem0(dp);
mem0(p);
for
(
int
i = 0; i < m; i ++) {
int
x;
scanf
(
"%d"
, &x);
cnt[x] ++;
}
for
(
int
x = 1; x <= 100; x ++) {
int
tot = cnt[x];
if
(tot == 0)
continue
;
double
buf = 1.0;
for
(
int
i = 0; i < tot; i ++) buf /= 2;
for
(
int
i = 0; i <= tot; i ++) {
p[x][((LL)x * (tot - 2 * i) + (LL)n * tot * x) % n] += buf;
buf *= ((
double
)tot - i) / (i + 1);
}
}
mem0(dp);
dp[0][0] = 1;
int
cur = 0;
for
(
int
x = 1; x <= 100; x ++) {
if
(cnt[x] == 0)
continue
;
for
(
int
i = 0; i < n; i++) {
for
(
int
j = 0; j < n; j++) {
dp[cur + 1][(i + j) % n] += p[x][j] * dp[cur][i];
}
}
cur ++;
}
double
ans = 0;
for
(
int
i = l - 1; i < r; i ++) ans += dp[cur][i];
printf
(
"%.4f\n"
, ans);
}
return
0;
}
|