hdu 1599 find the mincost route (最小环与floyd算法)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1599

find the mincost route

Time Limit: 1000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2530    Accepted Submission(s): 1006


Problem Description
杭州有N个景区,景区之间有一些双向的路来连接,现在8600想找一条旅游路线,这个路线从A点出发并且最后回到A点,假设经过的路线为V1,V2,....VK,V1,那么必须满足K>2,就是说至除了出发点以外至少要经过2个其他不同的景区,而且不能重复经过同一个景区。现在8600需要你帮他找一条这样的路线,并且花费越少越好。
 

 

Input
第一行是2个整数N和M(N <= 100, M <= 1000),代表景区的个数和道路的条数。
接下来的M行里,每行包括3个整数a,b,c.代表a和b之间有一条通路,并且需要花费c元(c <= 100)。
 

 

Output
对于每个测试实例,如果能找到这样一条路线的话,输出花费的最小值。如果找不到的话,输出"It's impossible.".
 

 

Sample Input
3 3
1 2 1
2 3 1
1 3 1
3 3
1 2 1
1 2 3
2 3 1
 

 

Sample Output
3
It's impossible.
 
题目大意:给出n个点和m条路,然后至少连通两个点,再回到起始点,不过走过的景点不能重复。如果不能顺利回到起始点则输出It's impossible.如果可以则输出最少的花费。
在比赛中刚开始看到这题,想到是迪杰斯克拉的模板题目,后来觉得不能标记点,所以放弃了;又想可以直接用并查集来看是否可以直接构成一个圆,然后发现这样不能找到最小的花费了,所以纠结许久,知道了用最小环+floydj就可以轻松ac了。
 
参考最小环+floyd的讲解。
转载网上大神。
Floyd 的 改进写法可以解决最小环问题,时间复杂度依然是 O(n^3),储存结构也是邻接矩阵
 
int mincircle = infinity;
Dist = Graph;

for(int k=0;k<nVertex;++k){
     //新增部分:
     for( int i=0;i<k;++i)
         for( int j=0;j<i;++j)
            mincircle = min(mincircle,Dist[i][j]+Graph[j][k]+Graph[k][i]);
     //通常的 floyd 部分:
     for( int i=0;i<nVertex;++i)
         for( int j=0;j<i;++j){
             int temp = Dist[i][k] + Disk[k][j];
             if(temp < Dist[i][j])
                Dist[i][j] = Dist[j][i] = temp;
        }
}
 
上面是对无向图的情况。
Floyd 算法保证了最外层循环到 k 时所有顶点间已求得以 0…k-1 为中间点的最短路径。一个环至少有3个顶点,设某环编号最大的顶点为 L ,在环中直接与之相连的两个顶点编号分别为 M 和 N (M,N < L),则最大编号为 L 的最小环长度即为 Graph(M,L) + Graph(N,L) + Dist(M,N) ,其中 Dist(M,N) 表示以 0…L-1 号顶点为中间点时的最短路径,刚好符合 Floyd 算法最外层循环到 k=L 时的情况,则此时对 M 和 N 循环所有编号小于 L 的顶点组合即可找到最大编号为 L 的最小环。再经过最外层 k 的循环,即可找到整个图的最小环。
 
若是有向图,只需稍作改动。注意考虑有向图中2顶点即可组成环的情况。
 
 
 
参考本题代码。
 1 #include <iostream>

 2 #include <cstdio>

 3 using namespace std;

 4 

 5 int n,node[1010][1010],map[1010][1010],Min;

 6 const int INF=99999999;

 7 

 8 int floyd()

 9 {

10     for (int i=1; i<=n; i++)

11         for (int j=1; j<=n; j++)

12         {

13             node[i][j]=map[i][j];

14         }

15     Min=INF;

16     for (int k=1; k<=n; k++)

17     {

18         for (int i=1; i<=k; i++)

19             for (int j=1; j<i; j++)

20             {

21                 if (Min>node[i][j]+map[j][k]+map[k][i])

22                     Min=node[i][j]+map[j][k]+map[k][i];

23                 //cout<<Min<<endl;

24             }

25         for (int i=1; i<=n; i++)

26             for (int j=1; j<=n; j++)

27             {

28                 if (node[i][j]>node[i][k]+node[k][j])

29                     node[i][j]=node[i][k]+node[k][j];

30             }

31     }

32     return Min;

33 }

34 

35 int main ()

36 {

37     int m;

38     while (~scanf("%d%d",&n,&m))

39     {

40         for (int i=1; i<=n; i++)

41         {

42             for (int j=1; j<=n; j++)

43                 map[i][j]=node[i][j]=INF;

44         }

45         while (m--)

46         {

47             int a,b,c;

48             scanf("%d%d%d",&a,&b,&c);

49             if (map[a][b]>c)

50                 map[a][b]=map[b][a]=c;

51         }

52         floyd();

53         if (Min==INF)

54             printf ("It's impossible.\n");

55         else

56             printf ("%d\n",Min);

57     }

58     return 0;

59 }

 

 

你可能感兴趣的:(route)