R语言模拟和预测ARIMA模型、随机游走模型RW时间序列趋势可视化

原文链接:http://tecdat.cn/?p=25122 

当一个序列遵循随机游走模型时,就说它是非平稳的。我们可以通过对时间序列进行一阶差分来对其进行平稳化,这将产生一个平稳序列,即零均值白噪声序列。例如,股票的股价遵循随机游走模型,收益序列(价格序列的差分)将遵循白噪声模型。

让我们更详细地了解这种现象。

由于随机游走序列的差分是白噪声序列,我们可以说随机游走序列是零均值白噪声序列的累积和(即积分)。有了这些信息,我们可以以 ARIMA 模型的形式定义 Random Walk 系列,如下所示:

ARIMA(0,1,0)
其中
- 自回归部分,p = 0
- 积分部分,d = 1
- 移动平均部分,q = 0

模拟随机游走序列

我们现在可以通过为arima.sim() 函数提供适当的参数来模拟 R 中的随机游走序列, 如下所示:

R <- arima.sim

我们可以使用该plot.ts() 函数绘制新生成的序列 。

> plot.ts

R语言模拟和预测ARIMA模型、随机游走模型RW时间序列趋势可视化_第1张图片

正如我们可以清楚地观察到的,这是一个非平稳序列,它的均值和标准偏差随时间变化不是恒定的。

一阶差分序列

为了使序列平稳,我们取序列的一阶差分。

if <- diff

绘制时,您会注意到差分序列类似于白噪声。

R语言模拟和预测ARIMA模型、随机游走模型RW时间序列趋势可视化_第2张图片

该 RW_diff 序列的统计数据计算如下:

> mean(Rf)
> sd(Wf)

 

带偏移的随机游走序列

我们模拟的上述随机游走序列在均值附近上下徘徊。但是,我们可以让随机游走系列跟随上升或下降趋势,称为偏移。为此,我们为函数提供了一个额外的参数均值/截距 arima.sim() 。这个截距是模型的斜率。我们还可以更改模拟序列的标准差。在下面的代码中,我们提供了 1 的平均值和 5 的标准差。

> Rt <- arima.sim
> plot.ts

R语言模拟和预测ARIMA模型、随机游走模型RW时间序列趋势可视化_第3张图片

估计随机游走模型

为了拟合具有时间序列偏移的随机游走模型,我们将遵循以下步骤

  1. 取数据的一阶差分。
  2. arima() 使用阶数为 的函数 将白噪声模型拟合到差分数据 c(0,0,0)
  3. 绘制原始时间序列图。
  4. abline() 通过提供通过将白噪声模型拟合为斜率得到的截距,使用该函数添加估计趋势 。

1. 一阶差分

为了使这个数列平稳,我们将取数列的差值。

> plot.ts

R语言模拟和预测ARIMA模型、随机游走模型RW时间序列趋势可视化_第4张图片

2. 将白噪声模型拟合到差分数据

我们现在可以使用该 arima() 函数将白噪声模型拟合到差分数据。

> whodl <- arima

R语言模拟和预测ARIMA模型、随机游走模型RW时间序列趋势可视化_第5张图片

我们可以看到拟合的白噪声模型的截距为 0.67。

3. 绘制原始随机游走数据

这可以使用以下命令完成:

> plot.ts

R语言模拟和预测ARIMA模型、随机游走模型RW时间序列趋势可视化_第6张图片

4.添加估计趋势

现在在同一个图上,我们要添加估计的趋势。在本课开始时,我们解释了随机游走序列如何是零均值白噪声序列的累积和(即积分)。因此,截距实际上是我们随机游走序列的斜率。

我们可以使用函数绘制趋势线 abline(a,b) ,其中 a 是截距,b 是线的斜率。在我们的例子中,我们将指定白噪声模型的“a=0”和“b=intercept”。

> abline

估计的趋势线将添加到我们的图中。

R语言模拟和预测ARIMA模型、随机游走模型RW时间序列趋势可视化_第7张图片


R语言模拟和预测ARIMA模型、随机游走模型RW时间序列趋势可视化_第8张图片

最受欢迎的见解

1.在python中使用lstm和pytorch进行时间序列预测

2.python中利用长短期记忆模型lstm进行时间序列预测分析

3.使用r语言进行时间序列(arima,指数平滑)分析

4.r语言多元copula-garch-模型时间序列预测

5.r语言copulas和金融时间序列案例

6.使用r语言随机波动模型sv处理时间序列中的随机波动

7.r语言时间序列tar阈值自回归模型

8.r语言k-shape时间序列聚类方法对股票价格时间序列聚类

9.python3用arima模型进行时间序列预测

你可能感兴趣的:(数据挖掘深度学习人工智能算法)