关于Handler的一些构造函数的解释,请参考Handler主要构造参数,通过这篇文章,大致可以对Handler的构造有一个粗浅的认识
下面我们从源码的角度来仔细分析一下Hanlder的收发消息机制,以及主线程和子线程对Handler不同处理
在子线程中用handler收发消息的常见代码
Thread uiThread = new Thread(uiRunable);
uiThread.start();
private Runnable uiRunable = new Runnable() {
@Override
public void run() {
Looper.prepare();
Handler uiHandler = new Handler(){
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
MiGuTvDebug.showDLevelLog("**GameMainActivity uiHandler msg**" + msg.what);
}
};
Message msg = new Message();
msg.what = 1;
uiHandler.sendMessage(msg);
Looper.loop();
}
};
我们先看第5行的代码,创建一个匿名内部类uiHandler ,我们具体看下他构造的过程
public Handler() {
this(null, false);
}
其调用的是
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
在这个方法里面,FIND_POTENTIAL_LEAKS的值为false,里面的逻辑我们暂时可以不用关注;紧接着我们通过Looper.myLooper()的方式获得一个Looper,当Looper为null的时候,抛出异常Can't create handler inside thread that has not called Looper.prepare(),因此在子线程中直接创建Hanlder会报错。
问题一:为什么我们调用了Looper.prepare()会使得mLooper 不为null,不报错?查看源码
public static void prepare() {
prepare(true);
}
其调用
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
static final ThreadLocal sThreadLocal = new ThreadLocal();
在这里我们可以知道当调用prepare的时候,我们会创建一个Looper到sThreadLocal里面,同时quitAllowed的值为true,请记住这是在子线程中调用Looper.prepare的时候,quitAllowed的值为true; Looper主要是与当前线程绑定,保证一个线程只会有一个Looper实例,同时一个Looper实例也只有一个MessageQueue
问题二: 这里的quitAllowed的值为true,或者为false有什么区别
quitAllowed的值有子线程和主线程的区别,子线程通过Looper.prepare来完成looper的创建,其中quitAllowed的值为true;然而主线程是通过Looper.prepareMainLooper来完成looper的创建,我们看下代码
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
从这里就可以发现,此处调用的prepare方法传入的值就为false
问题三:quitAllowed的值作用在
对于这个问题,我们先看下Looper.prepare中,new一个Looper的时候都做了什么
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
从这里我们可以看见Looper.prepare完成了消息队列的创建,同时将quitAllowed的值付给MessageQueue,MessageQueue的构造如下
MessageQueue(boolean quitAllowed) {
mQuitAllowed = quitAllowed;
mPtr = nativeInit();
}
在构造中有一个mQuitAllowed变量,我们知道当完成消息收发之后,我们需要调用Looper.quit或者quitSafely来退出这个Looper
//Looper.java
public void quit() {
mQueue.quit(false);
}
//Looper.java
public void quitSafely() {
mQueue.quit(true);
}
当调用quit或者quitSafely的时候,会调用MessageQueue的quit方法
//MessageQueue.java
void quit(boolean safe) {
if (!mQuitAllowed) {
throw new IllegalStateException("Main thread not allowed to quit.");
}
synchronized (this) {
if (mQuitting) {
return;
}
mQuitting = true;
if (safe) {
removeAllFutureMessagesLocked();
} else {
removeAllMessagesLocked();
}
// We can assume mPtr != 0 because mQuitting was previously false.
nativeWake(mPtr);
}
}
此时我们便可以知道quitAllowed的作用了,在线程中是允许调用quit或者quitSafely来完成退出Looper,因此子线程在prepare的时候new Looper(quitAllowed)的值为true,因此其是可以退出的;
但是主线程在prepareMainLooper的时候new Looper(quitAllowed)的值为false,因此主线程是不可以调用退出接口的,否则会报Main thread not allowed to quit.的错误
问题四:Looper.java中的quit和quitSafely区别
quit和quitSafely均会调用MessageQueue.java的quit方法,只不过传值不同罢了;当调用quit的时候,其间接调用的是removeAllMessagesLocked方法,而quitSafely其间接调用的是removeAllFutureMessagesLocked方法;
private void removeAllMessagesLocked() {
Message p = mMessages;
while (p != null) {
Message n = p.next;
p.recycleUnchecked();
p = n;
}
mMessages = null;
}
private void removeAllFutureMessagesLocked() {
final long now = SystemClock.uptimeMillis();
Message p = mMessages;
if (p != null) {
if (p.when > now) {
removeAllMessagesLocked();
} else {
Message n;
for (;;) {
n = p.next;
if (n == null) {
return;
}
if (n.when > now) {
break;
}
p = n;
}
p.next = null;
do {
p = n;
n = p.next;
p.recycleUnchecked();
} while (n != null);
}
}
}
removeAllMessagesLocked方法的代码比较简单,通过一个循环,将所有的消息全部移除掉,包括延迟的消息;我们查看removeAllFutureMessagesLocked方法的第五行,通过对消息的创建时间和当前时间做对比,如果消息时间大于当前时间,即这个消息是延迟消息,则我们会移除掉;针对消息列队里面非延迟消息,则会通过第七行的else交给handler进行处理
现在Looper,消息队列都创建好了,现在就剩下消息的收发了;
我们来看uiHandler.sendMessage(msg);
//将消息插入到消息列队的尾端
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
}
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
//SystemClock.uptimeMillis()获得是手机启动到当前的这段时间,其中是不包括系统深度休眠的时间,SystemClock.elapsedRealtime()和SystemClock.elapsedRealtimeNanos()表示系统开机到当前的时间总数。它包括了系统深度睡眠的时间。
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
//enqueue(排队)
return enqueueMessage(queue, msg, uptimeMillis);
}
最终会调用MessageQueue.java的enqueueMessage方法
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
这个方法有点复杂, 我们细细来看下;
msg.target就是指我们的Handler,当其为null的时候,抛出异常Message must have a target
当消息在被使用的时候,抛出异常This message is already in use
当我们调用了Looper的quit或者quitSafely方法之后,会调用MessageQueue.java的quit方法,在这个方法里面会将mQuitting设置为true,因此当发送消息的时候,如果发现已经调用了相关退出方法,则会抛出异常sending message to a Handler on a dead thread
第20行,每一个MessageQueue使用的是mMessages来保持一个消息
从22到52行,按照时间顺序将消息进行入队操作
问题五:既然MessageQueue使用变量mMessages来维持一个队列,那一个变量怎么对应那么多的
消息队列?,我们先看下Message.java这个类
public final class Message implements Parcelable {
// sometimes we store linked lists of these things
/*package*/ Message next;
private static final Object sPoolSync = new Object();
private static Message sPool;
private static int sPoolSize = 0;
private static final int MAX_POOL_SIZE = 50;
}
Message类是一个序列化的类,因此可以在进程间进行传递消息;Message的成员有next、sPool和sPoolSize,可以看出这是一个典型的链表结构,sPool就是一个全局的消息池即链表,next记录链表中的下一个元素,sPoolSize记录链表长度,MAX_POOL_SIZE表示链表的最大长度为50。
因此通过next和sPool我们便可以获取下一个消息;
问题六:那缓存很多的消息,会造成内存泄漏吗?
答案是不会的,至于为什么,我们需要结合Looper.loop方法来看;
问题七:消息队列最大缓存大小是50,那是不是说如果缓存了超过50个的消息,则在不处理的情况下,无法塞入第51个消息?
答案是否,在我们调用sendmessage的时候,其实是向message这个链表的尾端插入一个message,这个长度是没有限制的,所以如果你不断通过new message的方式去调用sendmessage的时候,是会出现内存溢出的问题的;然而如果你通过Message.obtain方法去获取一个消息,其是在消息池中获得一个消息,当然当消息池没有消息的时候,会new一个消息;
MAX_POOL_SIZE主要用在缓存的消息池中,这个消息池最大缓存50个消息,即当调用obtain方法之后,消息池中缓存的消息数减一,当调用loop方法之后,消息池中的消息数加一,当消息池中的消息数大于MAX_POOL_SIZE的时候,则消息池中的消息数不加一,也不将消息添加到消息池中,而这个消息池主要用来重复利用从而避免更多的内存消耗。
我们来看下Meesage.obtain()这个方法
/**
* Return a new Message instance from the global pool. Allows us to
* avoid allocating new objects in many cases.
* 从全局的消息池返回一个消息实例,这么避免创建很多实例
*/
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
return new Message();
}
在第一次调用obtain方法的时候,sPool为null,因此会创建一个message放到Message的链表微端,此时消息池不做减一的操作
第7行即Message链表有数据的时候,通过sPool返回链表头中的一个消息,
第8行将sPool指向链表中的下一个数据,方便下次调用obtain的时候去除第二个数据
第12行,将消息缓存池的大小减一
我们在看下消息的发送部分Looper.java的loop方法
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
* 在当前线程中不断从MessageQueue中去取消息,交给消息的target属性的dispatchMessage去处理
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long traceTag = me.mTraceTag;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
try {
msg.target.dispatchMessage(msg);
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
第18行,当调用loop方法之后,这个方法就进行循环,不断的获取消息,交给handler进行处理
第37行,msg.target即为handler,当调用dispatchMessage方法之后,即将消息交给Handler的handleMessage或者handleCallback进行处理,这里的handlerCallback即
private static void handleCallback(Message message) {
message.callback.run();
}
可见当我们使用Handler的post(Runnable r)方法之后,这个Runnable的run方法就会被执行
因此post(Runnable r)并不是开启一个线程,只不过是单纯的方法调用罢了;
第59行调用了Message.java的recycleUnchecked
/**
* Recycles a Message that may be in-use.
* Used internally by the MessageQueue and Looper when disposing of queued Messages.
* 清空消息的一些状态量,这样是为了避免内存泄漏,然后将消息放入到消息池中,供循环使用
*/
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = -1;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this;
sPoolSize++;
}
}
}
第9行到第19行,清空消息的一些状态,节约内存
第23行,将sPool指向下一个消息
第24行,sPool即Message
第25行,将缓存消息池大小加1
至于其他更新UI的方法,如
1: Handler的post(Runnable r)方法
public final boolean post(Runnable r)
{
return sendMessageDelayed(getPostMessage(r), 0);
}
private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();
m.callback = r;
return m;
}
其主要就是将Runnable复制给m.callback,当调用Looper的loop接口的时候,会间接的调用Runnable的run方法,
- View的post()方法
/**
* Causes the Runnable to be added to the message queue.
* The runnable will be run on the user interface thread.
*
* @param action The Runnable that will be executed.
*
* @return Returns true if the Runnable was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting.
*
* @see #postDelayed
* @see #removeCallbacks
*/
public boolean post(Runnable action) {
final AttachInfo attachInfo = mAttachInfo;
if (attachInfo != null) {
return attachInfo.mHandler.post(action);
}
// Postpone the runnable until we know on which thread it needs to run.
// Assume that the runnable will be successfully placed after attach.
getRunQueue().post(action);
return true;
}
第15行,获得attachInfo
第17行,获得attachInfo的handler,并调用其post方法,完成UI更新,所以也就是调用Hanlder.post完成更新
这个方法会将Runnable添加到消息列队的尾端,同时runnable会运行在用户自己的线程中
- Activity的runOnUiThread()方法
/**
* Runs the specified action on the UI thread. If the current thread is the UI
* thread, then the action is executed immediately. If the current thread is
* not the UI thread, the action is posted to the event queue of the UI thread.
*
* @param action the action to run on the UI thread
*/
public final void runOnUiThread(Runnable action) {
if (Thread.currentThread() != mUiThread) {
mHandler.post(action);
} else {
action.run();
}
}
也很容易理解了