RPC 框架 Kitex 实践入门:性能测试指南

2021 年 9 月 8 日,字节跳动宣布正式开源 CloudWeGo。CloudWeGo 是一套字节跳动内部微服务中间件集合,具备高性能、强扩展性和稳定性的特点,专注于解决微服务通信与治理的难题,满足不同业务在不同场景的诉求。CloudWeGo 第一批开源了四个项目:Kitex、Netpoll、Thriftgo 和 netpoll-http2,以 RPC 框架 Kitex 和网络库 Netpoll 为主。

日前,字节跳动服务框架团队正式开源 CloudWeGo,在抖音、今日头条均有深度应用的 Golang 微服务 RPC 框架 Kitex 也包含在其中。

本文旨在分享开发者在压测 Kitex 时需要了解的场景和技术问题。这些建议有助于用户更好地结合真实 RPC 场景对 Kitex 进行调优,使之更贴合业务需要、发挥最佳性能。用户也可以参考官方提供的压测项目 kitex-benchmark[4]了解更多细节。

微服务场景的特点

Kitex 诞生于字节跳动大规模微服务架构实践,面向的场景自然是微服务场景,因此下面会先介绍微服务的特点,方便开发者深入理解 Kitex 在其中的设计思考。

  • RPC 通信模型

微服务间的通信通常以 PingPong 模型为主,所以除了常规的吞吐性能指标外,每次 RPC 的平均时延也是开发者需要考虑的点。

  • 复杂的调用链路

一次 RPC 调用往往需要多个微服务协作完成,而下游服务又会有其自身依赖,所以整个调用链路会是一个复杂的网状结构。

在这种复杂调用关系中,某个中间节点出现的延迟波动可能会传导到整个链路上,导致整体超时。当链路上的节点足够多时,即便每个节点的波动概率很低,最终汇聚到链路上的超时概率也会被放大。所以单一服务的延迟波动 —— 即 P99 延迟指标,也是一个会对线上服务产生重大影响的关键指标。

  • 包体积大小

虽然一个服务通信包的大小取决于实际业务场景,但在字节跳动的内部统计中,我们发现线上请求大多以小包(<2KB)为主,所以在兼顾大包场景的同时,也重点优化了小包场景下的性能。

针对微服务场景进行压测

确定压测对象

衡量一个 RPC 框架的性能需要从两个视角分别去思考:Client 视角与 Server 视角。在大规模的业务架构中,上游 Client 不见得使用的也是下游的框架,而开发者调用的下游服务也同样如此,如果再考虑到 Service Mesh 的情况就更复杂了。

一些压测项目通常会把 Client 和 Server 进程混部进行压测,然后得出整个框架的性能数据,这其实和线上实际运行情况很可能是不符的。

如果要压测 Server,应该给 Client 尽可能多的资源,把 Server 压到极限,反之亦然。如果 Client 和 Server 都只给了 4 核 CPU 进行压测,会导致开发者无法判断最终得出来的性能数据是哪个视角下的,更无法给线上服务做实际的参考。

对齐连接模型

常规 RPC 的连接模型主要有三种:

  • 短连接:每次请求都创建新连接,得到返回后立即关闭连接

  • 长连接池:单个连接同时只能处理一次完整请求与返回

  • 连接多路复用:单个连接可以同时异步处理多个请求与返回

每类连接模型没有绝对好坏,取决于实际使用场景。连接多路复用虽然一般来说性能相对最好,但应用上必须依赖协议能够支持包序列号,且一些老框架服务可能也并不支持多路复用的方式调用。

Kitex 最早为保证最大程度的兼容性,在 Client 端默认使用了短连接,而其他主流开源框架默认使用连接多路复用,这导致一些用户在使用默认配置压测时,出现了比较大的性能数据偏差。

后来为了契合开源用户的常规使用场景,Kitex 在 v0.0.2 中也加入了默认使用长连接的设置。

对齐序列化方式

对于 RPC 框架来说,不考虑服务治理的话,计算开销主要都集中在序列化与反序列化中。

Kitex 对于 Protobuf 的序列化使用的是官方的 Protobuf 库[6],对于 Thrift 的序列化,则专门进行了性能优化,这方面的内容在官网博客中有介绍。

当前开源框架大多优先支持 Protobuf,而部分框架内置使用的 Protobuf 其实是做了许多性能优化的 gogo/protobuf 版本,但由于 gogo/protobuf 当前有失去维护的风险,所以出于可维护性角度考虑,我们依然决定只使用官方的 Protobuf 库,当然后续我们也会计划对 Protobuf 进行优化。

使用独占 CPU

虽然线上应用通常是多个进程共享 CPU,但在压测场景下,Client 与 Server 进程都处于极端繁忙的状况,如果同时还共享 CPU 会导致大量上下文切换,从而使得数据缺乏可参考性,且容易产生前后很大波动。

所以我们建议是将 Client 与 Server 进程隔离在不同 CPU 或者不同独占机器上进行。如果还想要进一步避免其他进程产生影响,可以再加上 nice -n -20 命令调高压测进程的调度优先级。

另外如果条件允许,相比云平台虚拟机,使用真实物理机会使得测试结果更加严谨与具备可复现性。

性能数据参考

在满足上述要求的前提下,我们对多个框架使用 Protobuf 进行了压测对比,压测代码在 kitex-benchmark 仓库。在充分压满 Server 的目标下,Kitex 在连接池模式下的 P99 Latency 在所有框架中最低。而在多路复用模式下,Kitex 在各指标上也都具有更加明显的优势。

配置:

  • Client 16 CPUs,Server 4 CPUs

  • 1KB 请求大小,Echo 场景

参考数据:

  • KITEX:连接池模式(默认模式)

  • KITEX-MUX:多路复用模式

  • 其他框架均使用多路复用模式

RPC 框架 Kitex 实践入门:性能测试指南_第1张图片 RPC 框架 Kitex 实践入门:性能测试指南_第2张图片

结语

在当前主流的 Golang 开源 RPC 框架中,每个框架其实在设计目标上都各有侧重:有些框架侧重于通用性,有些侧重于类似 Redis 这种轻业务逻辑的场景,有些侧重于吞吐性能,而有些则更侧重 P99 时延。

字节跳动的业务在日常迭代中,常常会出现因某个 feature 导致一个指标上升,另一个指标下降的情况,因此 Kitex 在设计之初就更倾向于解决大规模微服务场景下各种问题。

Kitex 发布后,我们接到了大量来自用户的自测数据,感谢社区对我们的关注和支持,也欢迎广大开发者基于本文提供的测试指南,针对自己的实际场景选择合适的工具。更多问题,请在 GitHub 上提 Issue 交流。

相关链接

  • [1] CloudWeGo 官网:

    https://www.cloudwego.io

  • [2] Kitex:

    https://github.com/cloudwego/kitex

  • [3] Netpoll:

    https://github.com/cloudwego/netpoll

  • [4] kitex-benchmark:

    https://github.com/cloudwego/kitex-benchmark

  • [5] netpoll-benchmark:

    https://github.com/cloudwego/netpoll-benchmark

  • [6] 官方 Protobuf 库:

    https://github.com/golang/protobuf

  • [7] Thriftgo:

    https://github.com/cloudwego/thriftgo

你可能感兴趣的:(java,数据库,python,编程语言,人工智能)