一、问题的提出
二、经济学研究范式、研究方法及其演变
三、思想和方法是经济学研究的两大支柱
四、数学公式与模型是经济思想的重要载体
五、数学和模型的局限性
六、使用定量分析方法时需要注意什么?
在经济学实证研究中,经常可以看到生搬硬套、滥用、误用模型与定量分析方法,没有考虑模型与方法所适用的前提条件,忽视对数学公式和模型的直观解释和经济解释。这些做法与现象,在初学阶段是不可避免的。为了尽快纠正这些错误做法,尽量克服定量分析方法本身固有的局限性,在使用定量分析方法时,特别需要注意以下几个方面。 第一,使用什么模型应该由所研究的经济问题的性质决定。“一把钥匙只解一把锁”,不存在一种能用于研究一切经济问题的模型或方法。在许多学术论文中,常常会发现罗列了很多种模型与方法。其实,哪个或者哪些模型为什么适合于研究所感兴趣的经济问题,需要加以论证。 第二,注意每个模型或方法所适用的前提条件。例如,经典T-检验和F-检验至少要求条件同方差。如果存在条件异方差,则必须使用White(1980)提出的标准差或方差公式,否则哪怕是大样本分布理论也不再适用(洪永淼,2020)。 第三,坚持模型简约性原则。模型与方法并非越复杂越好。事实上,大家常常在应用中忽略统计学和计量经济学的一个基本思想——简约性原则,即选择能够刻画数据中变量特征与变量之间关系的最简约模型(parsimonious model)。这个思想在统计学称为KISS(Keep It Sophisticatedly Simple)原则(Zellner,2002)。需要注意,所谓越简单越好是指在能够刻画数据中重要关系的前提下。例如,一个线性回归模型,显然不能刻画非线性关系,因此不适合于研究非对称经济关系(如非对称经济周期)。这也是为什么在大数据分析中机器学习方法常有较精准的样本外预测能力的主要原因。 事实上,经济学的分析方法是分层次的。比如,经济学专业一年级本科生在学习《经济学原理》基础课程时,任课老师一般采用平白的语言,尽量避免数学工具,像导数这个词要称为斜率,二阶导数则称为曲率,供给需求就用两条曲线来代表,这种教学方式比较直观,适合培养初学者的经济思维。到了学习《中级宏观经济学》和《中级微观经济学》课程的阶段,就需要使用微积分和线性代数。例如,在学习消费者效用最大化或者是生产者利润最大化时,最大化便转成一个有约束的数学优化问题。其中,通过求一阶导数得出最优解,从这些最优解推导出需求函数和供给函数,而消费者福利则通过积分求解。到了博士生阶段,则需要使用大量比较高深抽象的数学工具。例如,之前提到的欧拉方程,是一个刻画动态优化的数学工具。Stokey和Lucas(1989)的宏观经济学教科书《经济动态中的递归方法》(Recursive Method in Economic Dynamics),需要用到泛函分析(functional analysis)和测度论(measure theory)。总之,随着学习层次的不同,使用的分析方法也不同。分析方法并非越复杂越好,够用即可。但对专业的、原创性的经济学研究,一般需要建立在严谨的学术规范体系之上,所使用的研究方法与工具也比较专业。经济是一个复杂系统。一般来说,复杂系统不可能用简单方法就可以分析透彻,故其相应的分析方法会复杂一些。正如在机器学习时,如果数据结构比较复杂,相应的算法也要复杂些,才能取得较好的预测效果。 第四,注意模型的可解释性,特别是其重要参数的经济含义,以及给予有效的经济解释的前提条件。另一方面,一个模型或方法可能预测得很好,如基于大数据的机器学习方法,但是为什么能够预测得好,其背后的统计学、经济学逻辑是什么,需要进行深入的探索与解释,否则就变成了一个“黑箱”(black box)。经济学研究的目的之一就是要破解“黑箱”的奥秘。 第五,注意模型与方法的现实关联度。2003年诺贝尔经济科学奖得主格兰杰(Clive Granger)最早将长记忆模型(long memory model)引入时间序列计量经济学(Granger,1980;Grangerand Joyeux,1980)。但20年后他却批评长记忆模型与经济现实脱节,因为虽然有很多新的关于长记忆模型的计量经济学理论与方法相继提出,但这些对我们理解现实经济时间序列的记忆特征所提供的洞见并不多,是一个“空箱”(empty box)。从这个意义上说,应该避免数学和模型与经济现实严重背离或脱节,成为纯粹的数学游戏。 第六,注意数据质量,特别是数据缺陷可能带来的各种问题。针对数据缺陷,注意如何选择合适的模型,如何修补数据,以及如何解释实证结果等。 第七,注意模型证据和数据证据之间,以及统计假设和经济假说之间的差别,同时注意基于这些差别而对实证结果进行正确解释,以得出正确结论。模型数据和数据证据之间的差别,上一节已有详细讨论。经济假说(如有效市场假说)通常与模型无关(即model-free),但是为了检验经济假说,我们一般会使用一个计量经济学模型,将经济假说转化为统计假设(即参数假设),然后用数据进行检验。在将经济假说转为统计假设时,不仅需要一个具体模型,而且常常附加一些假设条件,这导致经济假说和统计假设两者之间存在一定差别,其原因与数据证据和模型证据之间存在一定差别类似。 第八,注意计量经济学模型刻画的统计关系和经济因果关系之间的差别。由于经济数据的非实验性,任何计量经济学模型所刻画的统计关系只是一种相关性或者预测关系,不能马上解释为经济因果关系。要将统计关系解释为经济因果关系,需要一些基本假设,也需要借助经济理论。计量经济学出现了一个新兴学科,叫做政策评估计量经济学(econometrics of program evaluation),就是将生物统计学、病理学的处理效应(treatment effect)方法论应用到经济学实证研究中。例如,在非实验条件下,要估计一项政策的效应有多大,可以比较这项政策实施之后所观测的经济结果和假设这项政策没有实施的条件下的经济结果两者之间的差距。在政策已实施的实际情况下假设该政策没有实施,显然是一种虚拟假设,其无法观测的经济结果因此称为“虚拟事实”(counterfactuals)。为了估计虚拟事实,需要对整个经济系统与计量经济学模型施加一系列的假设条件(Hsiao and Zhou,2019)。这些假设条件是否满足,所使用的模型是否合适,会影响到虚拟事实估计的准确性,从而影响对经济因果关系的识别与政策效应的测度。 第九,注意正确使用统计方法,例如在统计推断中正确理解和使用统计学的P值(P-value),同时要避免对一个给定的数据进行过度拟合和重复挖掘,这称为数据窥视(datasnooping)(Lo and MacKinlay,1990;White,2000)。数据窥视是指对一个给定的数据,进行多次或多种模型的拟合,在这一系列试验过程中,偶然会得到一个或几个具有统计显著性的结果,但这种统计显著性并不是真正的显著性,原因在于,即使一个经济变量的真实效应为零,只要通过很多方法、各种模型反复试验,最终很可能会发现有一个或几个模型,在一定的统计显著性水平上,其变量系数不为零,于是只报告这个显著结果。事实上,这并不是真正的显著结果,因为没有将被扔掉的很多不显著的实证结果考虑在内。这种做法导致的不正确结论,称为数据窥视偏差(data snooping bias)。 第十,鼓励使用并创新交叉学科的分析方法。定量分析,特别是计量经济学的分析方法,很多来自于其他学科,包括物理学、统计学、病理学等。大家所熟悉的普通最小二乘法(ordinary least squares,OLS),早期是数学家、天文学家高斯(Johann F. Gauss)用于测量天体之间的距离的方法。而线性回归模型的“回归”(regression)一词其实是生物学家高尔顿(Galton,1877,1885)在研究人类遗传问题时提出来的。他发现高个子的家庭后代最终会回归到社会的平均身高水平,而低个子的家族后代最终也会长到社会的平均水平,他把这种现象称作“回归”。判断一个方法是否科学,不在于它是否新颖、是否复杂,而在于它是否假设更一般性的前提条件,是否具有较强的科学性,能否提供与传统方法不一样的实证结果,能否为实证研究提供新的经济学洞见。在这方面,交叉学科的方法常常会拓展研究的范围与边界,从崭新的角度看待传统的经济问题,也因此比较容易获得新的发现。现在经济学有不少新兴的学科,例如计算经济学(computational economy),计算金融学(computationalfinance),政策评估计量经济学(econometrics of program evaluation),以及机器学习计量经济学(machine learning econometrics),这些都是数学、统计学、病理学、计算机科学与经济学的交叉融合,这种交叉融合能够产生新学科、新方法。因此,必须重视交叉学科方法在经济学的运用,积极借鉴数学、统计学、物理学、生物统计学、心理学、信息科学等学科的研究方法,用以研究复杂的经济现象。 第十一,注意定量分析论述的可读性。定量分析由于所使用的定量方法和工具比较抽象,直观性不强,可读性也比较差,容易导致读者看不懂。应该重视定量分析表述的可读性,包括数据分析的可视化,对所使用的模型要从经济学的角度加以阐述,解释为什么这些模型和方法在经济学研究中是重要的。对模型本身所揭示的关系应该给予直观解释,特别是要从经济学视角解释模型及模型参数的经济含义。对所获得的实证结果,特别是统计估计和检验结果,也要从经济学的角度来加以阐释,并与经济理论结合起来。对必要但比较复杂的数学推导与证明,可以放到文章的附录,而不是放在文章的正文。如果我们能够从这些方面加以重视,那么定量分析和可读性两者并不矛盾,照样可以讲得很直观、很清楚。 在国外, 一些经济学顶尖和主流学术期刊的风格不尽相同,比如《美国经济评论》(AmericanEconomic Review)、《政治经济学期刊》(Journal of Political Economy)、《经济学季刊》(Quarterly Journal of Economics),这些都比较偏向经济思想以及经济故事的原创性和趣味性。虽然也要求研究方法的规范性和正确性,但并不强调或鼓励使用非常复杂的研究方法,他们一般要求所使用的模型方法具有可解释性且够用即可。另外一些期刊,像《计量经济学》(Econometrica)和《经济理论期刊》(Journal of EconomicTheory),则鼓励使用现代定量方法特别是最前沿(cutting edge)、最先进(state of the art)的方法来研究经济与金融问题,在这些期刊上发表的论文大多使用比较严谨的数学方法与计量经济学模型。所以,不同期刊的要求不一样,每个期刊都有自己的特色,期刊之间存在差异。中国经济学的学术期刊也是如此,像经济学、管理学的一些主流期刊,可能比较偏好经济思想和经济故事,对研究方法的现代性和严谨性,可能没有那么高的要求,但前提必须是合乎规范的、正确的方法。而另外一些学术期刊则以方法论为主,鼓励使用最新的分析方法来研究中国经济问题。期刊之间的特色与差异并没有对错之分,这是偏好问题。这就要求研究者在投稿前要留意所投期刊的特色和要求,在文章写作时注意论文表述的风格。这里顺便提及,现代经济学的研究领域和分工越分越细,每个领域都有适合本领域的一些研究方法与工具。因此任何一个经济学家要完全看懂经济学所有领域的专业学术研究,是有相当难度的,甚至是不可能的。 第十二,在研究范式和研究方法方面,需要考虑与国际同行所使用的范式和方法接轨。过去40年,中国通过改革开放主动融入世界经济市场体系,积极参与国际分工,发挥自身的比较优势,成为世界第二大经济体,大大缩小了与发达国家的差距。与中国成功的经济转型和快速的经济发展相比,中国经济学的转型相对而言多少有点滞后,这导致了中国经济学在国际学术界的话语权和影响力相对弱一点。这里有很多原因,其中一个主要原因是我们还不善于运用“国际语言”讲述中国经济故事。所谓“国际语言”,就是让国际同行能听懂、理解、产生共鸣的方式,这种方式的最重要组成部分就是研究范式和研究方法。因此,研究范式及研究方法与国际接轨,对提升中国经济学和中国经济学家在国际学术界的话语权和影响力具有十分重要的意义。
七、大数据时代更要重视定量分析
在数字经济时代,越来越多的经济活动均由数据驱动,数据生产就好比石油生产,数据是新经济的重要生产要素。长期以来,GDP即国民生产总值(gross domestic product),一直用于衡量一个国家总的经济实力。萨缪尔森(Paul Samuelson)说,GDP是人类在20世纪最伟大的发明之一。现在出现了一个新的GDP概念,即数据生产总量(gross data product),正在成为测度一个国家在数字经济时代的财富与国力的新指标。党的十九届四中全会首次将数据列为一种重要的生产要素。 在互联网、移动互联网和人工智能为代表的计算机信息技术基础上产生的大数据,提供了以往传统数据所没有的信息和更加丰富的素材,这是一种“数据革命”,正在推动经济学研究范式特别是研究方法的深刻变革。它带来机遇,也带来巨大挑战,而这二者正在推动经济学研究向前发展。 数据分析的本质是定量分析。大数据种类繁多,形式多样,错综复杂,如存在非结构化数据、混类与混频数据,不同数据来源的收集、分析、处理与整合,需要多种定量方法共同使用,特别是机器学习方法和统计方法的结合。从本质上看,包括机器学习在内的人工智能方法是数学优化与计算机算法优化问题。人工智能特别是机器学习在经济学研究中的应用,包括对经济数据的分析、预测以及相关计算机算法程序的应用,都是比较高级的量化分析。对经济数据,特别是经济大数据的分析,其主要的目的是揭示数据中经济变量之间的逻辑关系,特别是其预测关系和因果关系,从而揭示经济运行规律,预测经济未来的走势,并且为制定政策提供科学依据。 大数据和机器学习能够极大拓展经济学研究的范围与边界。利用大数据,特别是社交网络非结构化、半结构化数据,可以构造投资者情感指数、幸福感指数、社会舆情指数、政策不确定性指数、政策变化指数等,这些是传统数据所没有的,可用以研究这些变量对经济与市场的影响或者其决定因素是什么。实时或高频大数据,使经济学家可以研究高频经济现象,例如探索实体经济与金融市场之间的互动关系、实时预测宏观经济变化趋势等。 前文提及,经济学存在各种不同的研究方法,它们各有优缺点,可以结合起来实现优势互补。例如,研究经济史,或者研究一个经济制度长期的历史发展趋势,最适合的研究方法是历史分析方法。但是如果能够通过对历史数据进行统计分析(现在不少历史数据可以通过人工智能的方法收集构建),这不但可以改进历史分析的严谨程度,还可以产生一个新的学科:量化经济史学,即用计量经济学的实证方法来研究经济史。计量经济学方法和历史分析方法完全可以兼容,可以提高经济史研究质量,并提供新的洞见、产生新的结论。
八、结论
随着大数据时代的到来,中国的互联网和移动互联网网民数量是全世界最多的,超过美国和欧盟所有网民人数的总和。中国是全世界第二大经济体,其消费规模已经接近美国,预计将在不远的将来超过美国,成为世界上最大的消费国,此外中国还有很多经济政策实验。因此中国经济在生产、交换和消费等方面产生了大量数据,在大数据资源方面具有很强的优势,具有产生经济理论创新和方法论创新的可能性。我们应该立足中国大地,以解决中国经济问题为导向,充分利用中国在大数据资源等方面的优势,创新定量分析方法,打造经济学研究的“工匠精神”,并且将定性分析和定量分析相结合,揭示中国经济的内在逻辑、因果关系及其运行规律,为中国经济改革与发展及全球化实践服务,同时,善于用“国际语言”讲述中国经济故事,提升中国经济学的国际影响力与国际话语权。 作者:洪永淼(康奈尔大学经济学系、统计学与数据科学系、厦门大学王亚南经济研究院与邹至庄经济研究中心)汪寿阳(中国科学院数学与系统科学研究院、中国科学院大学经济与管理学院)文章刊发:《管理世界》2020年第10期转载自公众号:管理世界杂志 文章刊发:洪永淼、汪寿阳:《数学、模型与经济思想》,《管理世界》,2020年第10期,第15~26页。