转自丁奇老师《MySQL实战45讲》
MySQL可以分为Server层和存储引擎层两部分
Server层包括连接器、查询缓存、分析器、优化器、执行器等,涵盖MySQL的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等),所有跨存储引擎的功能都在这一层实现,比如存储过程、触发器、视图等。
存储引擎层负责数据的存储和提取。其架构模式是插件式的,支持InnoDB、MyISAM、Memory等多个存储引擎。现在最常用的存储引擎是InnoDB,它从MySQL 5.5.5版本开始成为了默认存储引擎。
查询语句的执行流程:一条查询语句的执行过程一般是经过连接器、分析器、优化器、执行器等功能模块,最后到达存储引擎。
在某个表上执行更新语句,会使跟这个表有关的查询缓存失效,更新语句会把该表上所有缓存结果都清空。正因如此,一般不建议使用查询缓存。
数据库里面,长连接是指连接成功后,如果客户端持续有请求,则一直使用同一个连接。短连接则是指每次执行完很少的几次查询就断开连接,下次查询再重新建立一个。
建立连接的过程通常是比较复杂的,所以我建议在使用中要尽量减少建立连接的动作,也就是尽量使用长连接。
但是全部使用长连接后,你可能会发现,有些时候MySQL占用内存涨得特别快,这是因为MySQL在执行过程中临时使用的内存是管理在连接对象里面的。这些资源会在连接断开的时候才释放。所以如果长连接累积下来,可能导致内存占用太大,被系统强行杀掉(OOM),从现象看就是MySQL异常重启了。
怎么解决这个问题呢?可以考虑以下两种方案。
mysql_reset_connection
来重新初始化连接资源。这个过程不需要重连和重新做权限验证,但是会将连接恢复到刚刚创建完时的状态。事务就是要保证一组数据库操作,要么全部成功,要么全部失败。
ACID(Atomicity、Consistency、Isolation、Durability,即原子性、一致性、隔离性、持久性)
隔离级别包括:读未提交(read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(serializable )
mysql默认隔离级别为:可重复读(repeatable-read)
隔离级别 | 脏读 | 不可重复度 | 幻读 |
---|---|---|---|
读未提交(read-uncommitted) | 是 | 是 | 是 |
读已提交(read-committed) | 否 | 是 | 是 |
可重复读(repeatable-read) | 否 | 否 | 是 |
可串行化(serializable) | 否 | 否 | 否 |
举个例子:
mysql> create table T(c int) engine=InnoDB;
insert into T(c) values(1);
在实现上,数据库里面会创建一个视图,访问的时候以视图的逻辑结果为准。在
“可重复读”隔离级别下,这个视图是在
事务启动时创建的,整个事务存在期间都用这个视图。在
“读提交”隔离级别下,这个视图是在
每个SQL语句开始执行的时候创建的。这里需要注意的是,“读未提交”隔离级别下直接返回记录上的最新值,没有视图概念;而“串行化”隔离级别下直接用
加锁的方式来避免并行访问。
假设一个值从1被按顺序改成了2、3、4,在回滚日志里面就会有类似下面的记录。
当前值是4,但是在查询这条记录的时候,不同时刻启动的事务会有不同的read-view。如图中看到的,在视图A、B、C里面,这一个记录的值分别是1、2、4,同一条记录在系统中可以存在多个版本,就是数据库的多版本并发控制(MVCC)。对于read-view A,要得到1,就必须将当前值依次执行图中所有的回滚操作得到。
即使现在有另外一个事务正在将4改成5,这个事务跟read-view A、B、C对应的事务是不会冲突的。
你一定会问,回滚日志总不能一直保留吧,什么时候删除呢?答案是,在不需要的时候才删除。也就是说,系统会判断,当没有事务再需要用到这些回滚日志时,回滚日志会被删除。
什么时候才不需要了呢?就是当系统里没有比这个回滚日志更早的read-view的时候。
基于上面的说明,我们来讨论一下为什么建议尽量不要使用长事务。
长事务意味着系统里面会存在很老的事务视图。由于这些事务随时可能访问数据库里面的任何数据,所以这个事务提交之前,数据库里面它可能用到的回滚记录都必须保留,这就会导致大量占用存储空间。
在MySQL 5.5及以前的版本,回滚日志是跟数据字典一起放在ibdata文件里的,即使长事务最终提交,回滚段被清理,文件也不会变小。
除了对回滚段的影响,长事务还占用锁资源,也可能拖垮整个库,这个我们会在后面讲锁的时候展开。
事务启动方式有以下几种:
显式启动事务语句, begin 或 start transaction。配套的提交语句是commit,回滚语句是rollback。
set autocommit=0,这个命令会将这个线程的自动提交关掉。意味着如果你只执行一个select语句,这个事务就启动了,而且并不会自动提交。这个事务持续存在直到你主动执行commit 或 rollback 语句,或者断开连接。
索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。
哈希索引
哈希表是一种以键-值(key-value)存储数据的结构,我们只要输入待查找的值即key,就可以找到其对应的值即Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置。不可避免地,多个key值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,在数组冲突位置拉出一个链表。
你可以设想下,如果你现在要找身份证号在[ID_card_X, ID_card_Y]这个区间的所有用户,就必须全部扫描一遍了。
所以,哈希表这种结构适用于只有等值查询的场景,无法进行排序,和范围查询(范围查询需要挨个哈希遍历)
有序数组
有序数组在等值查询和范围查询场景中的性能非常优秀。所以,有序数组索引只适用于静态存储引擎。这个索引结构支持范围查询。你要查身份证号在[ID_card_X, ID_card_Y]区间的User,可以先用二分法找到ID_card_X(如果不存在ID_card_X,就找到大于ID_card_X的第一个User),然后向右遍历,直到查到第一个大于ID_card_Y的身份证号,退出循环。
如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。
二叉树
二叉搜索树也是课本里的经典数据结构了。根据身份证号查名字的例子,如果我们用二叉搜索树来实现的话,示意图如下所示:
二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。这样如果你要查ID_card_n2的话,按照图中的搜索顺序就是按照UserA -> UserC -> UserF -> User2这个路径得到。这个时间复杂度是O(log(N))。
当然为了维持O(log(N))的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是O(log(N))。
多叉树
树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。
你可以想象一下一棵100万节点的平衡二叉树,树高20。一次查询可能需要访问20个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要10 ms左右的寻址时间。也就是说,对于一个100万行的表,如果使用二叉树来存储,单独访问一个行可能需要20个10 ms的时间,这个查询可真够慢的。
为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N叉”树。这里,“N叉”树中的“N”取决于数据块的大小。
以InnoDB的一个整数字段索引为例,这个N差不多是1200。这棵树高是4的时候,就可以存1200的3次方个值,这已经17亿了。考虑到树根的数据块总是在内存中的,一个10亿行的表上一个整数字段的索引,查找一个值最多只需要访问3次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。
N叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。
在InnoDB中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB使用了B+树索引模型,所以数据都是存储在B+树中的。
每一个索引在InnoDB里面对应一棵B+树。
假设,我们有一个主键列为ID的表,表中有字段k,并且在k上建立索引。
mysql> create table T(
id int primary key,
k int not null,
name varchar(16),
index (k)
)engine=InnoDB;
基于主键索引和普通索引的查询有什么区别?
自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOT NULL PRIMARY KEY AUTO_INCREMENT。插入新记录的时候可以不指定ID的值,系统会获取当前ID最大值加1作为下一条记录的ID值。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。
而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。
除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?
由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约20个字节,而如果用整型做主键,则只要4个字节,如果是长整型(bigint)则是8个字节。显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。
所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。
有没有什么场景适合用业务字段直接做主键的呢?
还是有的。比如,有些业务的场景需求是这样的:
你一定看出来了,这就是典型的KV场景。由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。这时候我们就要优先考虑上一段提到的“尽量使用主键查询”原则,直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树。
有如下一张表:
mysql> create table T (
ID int primary key,
k int NOT NULL DEFAULT 0,
s varchar(16) NOT NULL DEFAULT '',
index k(k)
)engine=InnoDB;
insert into T values(100,1, 'aa'),(200,2,'bb'),(300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');
索引组织结构:
执行 select * from T where k between 3 and 5,需要执行几次树的搜索操作,会扫描多少行?
这条SQL查询语句的执行流程:
覆盖索引
如果执行的语句是select ID from T where k between 3 and 5,这时只需要查ID的值,而ID的值已经在k索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引k已经“覆盖了”我们的查询需求,我们称为覆盖索引。
由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。
需要注意的是,在引擎内部使用覆盖索引在索引k上其实读了三个记录,R3~R5(对应的索引k上的记录项),但是对于MySQL的Server层来说,它就是找引擎拿到了两条记录,因此MySQL认为扫描行数是2。
我们来讨论一个问题:在一个市民信息表上,是否有必要将身份证号和名字建立联合索引?
如果有根据身份证号查询市民信息的需求,我们只要在身份证号字段上建立索引就够了。而再建立一个(身份证号、姓名)的联合索引,是不是浪费空间?
如果现在有一个高频请求,要根据市民的身份证号查询他的姓名,这个联合索引就有意义了。它可以在这个高频请求上用到覆盖索引,不再需要回表查整行记录,减少语句的执行时间。
当然,索引字段的维护总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。
最左前缀原则
不只是索引的全部定义,只要满足最左前缀,就可以利用索引来加速检索。这个最左前缀可以是联合索引的最左N个字段,也可以是字符串索引的最左M个字符。
在建立联合索引的时候,如何安排索引内的字段顺序
检索出表中“名字第一个字是张,而且年龄是10岁的所有男孩
mysql> select * from tuser where name like '张%' and age=10 and ismale=1;
在MySQL 5.6之前,只能从“张六”对应的主键“ID3”开始一个个回表。到主键索引上找出数据行,再对比字段值。
MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。