python3.9性能_谁说Python性能差的

展开全部

[转载]

最近看到网上有人对比636f70793231313335323631343130323136353331333337373564Python,Shell脚本, C++,主要是拿Python性能说事,个人觉得意义不大。

一个语言有什麼性能问题呢,是背後的实现(标准库,编译器)决定着一切,就像总有人想对比c++和c的效率一样。

还有就是,Python总被人叫做是脚本语言,其实脚本更多指的是批处理命令文件,是shell命令的集合,和python完全

不是一个层次。不同的工具所在层次不同,适用的问题也不同。把不同层次上的东西拉到一起做比较,什麼问题也说明不了。

另外,shell就知道fork,你说他还能干嘛?:-)。

下面先乱侃一通,再以实例探讨下Python的性能问题。

首先,Python是一门动态编程语言,主要亮点是可以提高开发应用的效率。 他是和Java,perl,Ruby等语言同类的。

是做系统集成,Web应用等系统的利器,最近在科学计算领域也是大方光彩(numpy, scipy, sci-kit learn)。

和C/Cplusplus基本不是一个层次的开发工具,他们是做底层系统(基础库,os,ecos就是c++写的,还是用在嵌入式系统中)的,

很多库提供的功能也很基础。但,你可以为Python写c或cpp的模块,提高你的Python系统的整体性能。

其次,Python的主要解释器CPython是用C语言实现的,不同类型(dict,list)和函数实现的算法很不同。如果你的系统对性能很敏感,

那必须了解一些内幕,一个函数输入不同的参数,性能可能相差很大。另外,Python解释器执行Python代码时候,大概经历如下几个阶段:

1) 加载代码文件 2)翻译成AST 3)生成bytecode 4)在PVM(python virtual machine)上执行bytecode,PVM实际是一个基於栈的虚拟机。

其中,前3个阶段看文件代码量,一般就ms级别的消耗,如果你不想浪费,可以使用python -O -m py_compile xx.py命令,

将xx.py先编译为xx.pyo的字节码,然後在调用python xx.pyo执行. PVM你可以简单的想象为一个C语言写的函数,裏面有一个非常大的switch,

根据不同的bytecode内容,执行不同的动作。比如遇到一个打开文件指令,这个函数就会调用libc的库函数,执行c语言的打开文件操作。

其实很多操作python bytecode和c语言之间的性能差异很小的,因为Python的很多功能模块就是直接执行C库的。

再次,随着Python的广泛应用,CPython解释器的性能问题确实越来越严重,特别是数据挖掘,机器学习领域的日趋火热,其中很多优秀工具的实现

都是用Python来做的。为了解决这个问题,Python社区提出了多种不同的解释器,比如针对数值计算的numba,用python实现的python解释器pypy等。

他们的主要目的就是给Python加速,用到的技术有JIT,LLVM。比如numba为python提供了新的decorator,让python函数能在运行时

通过llvm库被翻译成machine code。而CPython的现在主要的目的就变为一个Python解释器的范本,就是提供一个稳定可靠的功能最全的解释器实现参考。

另外,如果某个用Python实现的功能模块的性能很关键,你可以把这个模块先用Cython翻译成C语言代码,然後在编译为可执行程序。当然用Cython,

你也可以在python中更加方便的调用外部C库,保证整个系统的性能。所以,很多Python系统的执行会越来越快,但并不是Python快了,而是後面的支持

越来越强大了。

最後,Python就是和Java类似的一门语言,不要把他理解为是一种脚本。刚开始把他理解为脚本,可能是因为python提供了一个命令行工具,让人可以输入

python代码,并立刻见到结果。其实,这只不过python给你提供的一个优秀的工具之一而已。Python在各个领域的使用越来越广泛,开源资源也越来越多:

1. 大规模分布式计算disco,提供和hadoop类似的mapreduce模型 htt p:/ /discoprojec t.o rg/

2. 科学计算/可视化 numpy,scipy, matplotlib

3. 数据挖掘orange, sci-kit learn scikit-learn.sourceforg e.n et

4. Web开发 django project

所有IT领域,基本都能找到Python的痕迹。

说了这麼多,举一个文本处理的例子,就是计算文本中第3列数据的和,来看看Python的功力,特别是性能方面的问题,

对比参考就是awk神器,其实拿awk做对比不是很公平,毕竟awk是优化再优化的工具(没动力看他的实现,我猜的:)),

应该自己写个c语言版本的。

样本文件有1000万行,格式如下:

data.txt:

d0 sp 0

d1 sp 1

d2 sp 2

d3 sp 3

d4 sp 4

d5 sp 5

d6 sp 6

d7 sp 7

d8 sp 8

d9 sp 9

先看awk的结果:

$ time cat data.txt |awk '{ sum+=$3} END {print sum}'

49976634308700

real0m3.662s

user0m3.576s

sys0m0.240s

1000万行3秒,效率果真高。

再看Python的,我做了四个版本。

Python代码版本(1):

import sys

def data_sum():

datasum = 0

for line in sys.stdin:

raw = line.split()

datasum += int(raw[2],10)

print datasum

if __name__ == "__main__":

data_sum()

Python代码版本(2):

import sys

def data_sum():

datasum = 0

for line in sys.stdin:

raw = line.split()

datasum += int(raw[2])

print datasum

if __name__ == "__main__":

data_sum()

Python代码版本(3):

def data_sum():

datasum = 0

for line in sys.stdin:

datasum += int(‘2’,10)

print datasum

if __name__ == "__main__":

data_sum()

Python代码版本(4):

import sys

def data_sum():

datasum = 0

for line in sys.stdin:

raw = line.split()

print datasum

if __name__ == "__main__":

data_sum()

版本(1)执行结果:

首先将python代码编译成字节码,运行看看

$python -O -m py_compile datasum.py

$ time cat data.txt |python datasum.pyo

49976634308700

real0m7.151s

user0m7.088s

sys0m0.192s

再试试直接运行python代码

$ time cat data.txt |python datasum.py

49976634308700

real0m7.323s

user0m7.228s

sys0m0.212s

两种方法大概有个毫秒级别的差异,主要消耗在cpython把python代码翻译成ast阶段,感兴趣可以自己编译一个cpython验证下。

还有pypy,看看他的JIT和stackless效果如何。

$ time cat data.txt | pypy-c datasum.py

49976634308700

real0m4.649s

user0m4.556s

sys0m0.224s

怎样?比awk版本就慢了1秒钟。我已经非常满意了。下面再试试其他版本,顺便看看到底Python慢在了哪裏。

版本(2):

$ time cat data.txt |python datasum.py

49976634308700

real0m9.111s

user0m9.025s

sys0m0.220s

$ time cat data.txt | pypy-c datasum.py

49976634308700

real0m4.694s

user0m4.588s

sys0m0.248s

版本(2)直接就比版本(1)慢了2秒。就差了一个base参数而已,原因看下Cpython的代码就清楚了(Python/bltinmodule.c)。

加了base的,直接调用: x = PyOS_strtol(s, &end, base);

不加base的,要通过PyNumber_Int等一列内部类型处理函数,最後到达PyOS_strtol。

版本(3):

$ time cat data.txt |python datasum.py

20000000

real0m3.127s

user0m3.044s

sys0m0.188s

$ time cat data.txt | pypy-c datasum.py

20000000

real0m2.393s

user0m2.320s

sys0m0.196s

版本(4):

$ time cat data.txt |python datasum.py

0

real0m3.920s

user0m3.852s

sys0m0.180s

$ time cat data.txt | pypy-c datasum.py

0

real0m3.324s

user0m3.208s

sys0m0.252s

通过对比版本(3)和版本(4)可以发现,Python主要慢在了split函数这裏,也就是提取第3列这个动作上。

初步想想,用C语言确实可以做到速度更快,但用Python没想到什麼好办法,正则表达式会更慢。

上面都是用Python的解释器来执行代码的,下面把版本(1)用Cython编译成C语言,看看效果如何:

$ cython --embed -o datasum.c datasum.py

$ gcc -o datasum datasum.c -I/usr/include/python2.7 -lpython2.7

$ time cat data.txt |./datasum

49976634308700

real0m6.332s

user0m6.272s

sys0m0.192s

比pypy还是慢了一些,pypy在代码生成上有些优化,cython基本就是translate。

总结下就是:

Python是快速原型开发的利器,如果你对性能有要求,那麼就用他的各种优化他,Python不会辜负你的。

当你的领导/客户给你很大的deadline压力时候,Python就是你的救命草,呵呵。

当然,某些简单功能,比如本文的例子,用awk就可以了嘛,干嘛费力气优化python,:-)。

已赞过

已踩过<

你对这个回答的评价是?

评论

收起

你可能感兴趣的:(python3.9性能)