<parent>
<artifactId>spring-boot-parentartifactId>
<groupId>org.springframework.bootgroupId>
<version>2.5.8version>
parent>
<properties>
<maven.compiler.source>8maven.compiler.source>
<maven.compiler.target>8maven.compiler.target>
properties>
<dependencies>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-testartifactId>
dependency>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-data-elasticsearchartifactId>
dependency>
<dependency>
<groupId>org.projectlombokgroupId>
<artifactId>lombokartifactId>
dependency>
dependencies>
Elaticsearch,简称为 ES,ES 是一个开源的高扩展的分布式全文搜索引擎,是整个 Elastic Stack 技术栈的核心。它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理 PB 级别的数据。
The Elastic Stack, 包括 Elasticsearch、Kibana、Beats 和 Logstash(也称为 ELK Stack)。能够安全可靠地获取任何来源、任何格式的数据,然后实时地对数据进行搜索、分析和可视化。
Elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容。
目前市面上流行的搜索引擎软件,主流的就两款:Elasticsearch 和 Solr,这两款都是基于 Lucene 搭建的,可以独立部署启动的搜索引擎服务软件。
Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,提供了一个简单却强大的应用程式接口,能够做全文索引和搜寻。
Elasticsearch和Solr对比
特征 | Solr/SolrCloud | Elasticsearch |
---|---|---|
社区和开发者 | Apache软件基金和社区支持 | 单一商业实体及其员工 |
节点发现 | Apache Zookeeper.在大量项目中成熟且经过实战测试 | Zen内置于Elasticsearch本身,需要专用的主节点才能进行裂脑保护 |
碎片放置 | 本质上是静态,需要手动工作来迁移分片,从Solr 7开始- AutoscalingAPI允许一些动态操作 | 动态,可以根据群集状态按需移动分片 |
高速缓存 | 全局,每个段更改无效 | 每段,更适合动态更改数据 |
分析引擎性能 | 非常适合精确计算的静态数据 | 结果的准确性取决于数据放置 |
全文搜索功能 | 基于Lucene的语言分析,多建议,拼写检查,丰富的高亮显示支持 | 基于Lucene的语言分析,单一建议API实现, 高亮显示重新计算 |
DevOps支持 | 尚未完全,但即将到来 | 非常好的API |
非平面数据处理 | 嵌套文档和父子支持 | 嵌套和对象类型的自然支持允许几乎无限的嵌套和父-子支持 |
查询DSL | JSON (有限),XML (有限)或URL参数 | JSON |
机器学习 | 内置-在流聚合之上,专注于逻辑回归和学习排名贡献模块 | 商业功能,专注于异常和异常值以及时间序列数据 |
倒排索引的概念是基于MySQL这样的正向索引而言的。
正向索引
那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:
如果是根据id查询,那么直接走索引,查询速度非常快。
但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:
1)用户搜索数据,条件是title符合"%手机%"
2)逐行获取数据,比如id为1的数据
3)判断数据中的title是否符合用户搜索条件
4)如果符合则放入结果集,不符合则丢弃。回到步骤1
逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。
倒排索引
倒排索引中有两个非常重要的概念:
Document
):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息。Term
):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条创建倒排索引是对正向索引的一种特殊处理,流程如下:
1)用户输入条件"华为手机"
进行搜索。
2)对用户输入内容分词,得到词条:华为
、手机
。
3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。
4)拿着文档id到正向索引中查找具体文档。
如图:
虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。
正向索引和倒排索引比较
正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程。
而倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程。
正向索引:
倒排索引:
elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。
结点和集群
结点(Node):每个es实例称为一个节点。节点名自动分配,也可以手动配置。
集群(cluster):包含一个或多个启动着es实例的机器群。通常一台机器起一个es实例。同一网络下,集名一样的多个es实例自动组成集群,自动均衡分片等行为。默认集群名为“elasticsearch”。
分片和副本
分片 ( shard ): index数据过大时,将index里面的数据,分为多个shard,分布式的存储在各个服务器上面。可以支持海量数据和高并发,提升性能和吞吐量,充分利用多台机器的cpu。
副本( replica ) : 在分布式环境下,任何一台机器都会随时宕机,如果宕机,index的一个分片没有,导致此index不能搜索。所以,为了保证数据的安全,我们会将每个index的分片经行备份,存储在另外的机器上。保证少数机器宕机es集群仍可以搜索。
能正常提供查询和插入的分片我们叫做主分片(primary shard),其余的我们就管他们叫做备份的分片(replica shard)。
文档和字段
elasticsearch是面向文档(Document) 存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:
而Json文档中往往包含很多的字段(Field),类似于数据库中的列。
索引和映射
索引(Index),就是相同类型的文档的集合。
例如:
因此,我们可以把索引当做是数据库中的表。
数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。
mysql与elasticsearch比较
我们统一的把mysql与elasticsearch的概念做一下对比:
MySQL | Elasticsearch | 说明 |
---|---|---|
Table | Index | 索引(index),就是文档的集合,类似数据库的表(table) |
Row | Document | 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式 |
Column | Field | 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column) |
Schema | Mapping | Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema) |
SQL | DSL | DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD |
是不是说,我们学习了elasticsearch就不再需要mysql了呢?
并不是如此,两者各自有自己的擅长支出:
Mysql:擅长事务类型操作,可以确保数据的安全和一致性
Elasticsearch:擅长海量数据的搜索、分析、计算
因此在企业中,往往是两者结合使用:
数据同步思路分析
常见的数据同步方案有三种:
1.同步调用
2.异步通知
方案二:异步通知
3.监听binlog
方案三:监听binlog
流程如下:
4.选择
方式一:同步调用
方式二:异步通知
方式三:监听binlog
索引库就类似数据库表,mapping映射就类似表的结构。我们要向es中存储数据,必须先创建“库”和“表”。
mapping是对索引库中文档的约束,常见的mapping属性包括:
基本语法:
格式:
PUT /索引库名称
{
"mappings": {
"properties": {
"字段名":{
"type": "text",
"analyzer": "ik_smart"
},
"字段名2":{
"type": "keyword",
"index": "false"
},
"字段名3":{
"properties": {
"子字段": {
"type": "keyword"
}
}
},
// ...略
}
}
}
示例:
PUT /xianyu
{
"mappings": {
"properties": {
"info":{
"type": "text",
"analyzer": "ik_smart"
},
"email":{
"type": "keyword",
"index": "falsae"
},
"name":{
"properties": {
"firstName": {
"type": "keyword"
}
}
},
// ... 略
}
}
}
RestAPI基本步骤:
//1.创建请求
CreateIndexRequest request=new CreateIndexRequest("hotel");
//2.准备请求参数
request.source(HotelConstants.MAPPING_TEMPLATE, XContentType.JSON);
//3.发送请求
client.indices().create(request, RequestOptions.DEFAULT);
1.同步创建:
//创建索引对象
CreateIndexRequest createIndexRequest = new CreateIndexRequest("itheima_book");
//设置参数
createIndexRequest.settings(Settings.builder().put("number_of_shards", "1").put("number_of_replicas", "0"));
//指定映射1
createIndexRequest.mapping(" {\n" +
" \t\"properties\": {\n" +
" \"name\":{\n" +
" \"type\":\"keyword\"\n" +
" },\n" +
" \"description\": {\n" +
" \"type\": \"text\"\n" +
" },\n" +
" \"price\":{\n" +
" \"type\":\"long\"\n" +
" },\n" +
" \"pic\":{\n" +
" \"type\":\"text\",\n" +
" \"index\":false\n" +
" }\n" +
" \t}\n" +
"}", XContentType.JSON);
//指定映射2
```
// Map message = new HashMap<>();
// message.put("type", "text");
// Map properties = new HashMap<>();
// properties.put("message", message);
// Map mapping = new HashMap<>();
// mapping.put("properties", properties);
// createIndexRequest.mapping(mapping);
```
//指定映射3
```
// XContentBuilder builder = XContentFactory.jsonBuilder();
// builder.startObject();
// {
// builder.startObject("properties");
// {
// builder.startObject("message");
// {
// builder.field("type", "text");
// }
// builder.endObject();
// }
// builder.endObject();
// }
// builder.endObject();
// createIndexRequest.mapping(builder);
```
//设置别名
createIndexRequest.alias(new Alias("itheima_index_new"));
// 额外参数
//设置超时时间
createIndexRequest.setTimeout(TimeValue.timeValueMinutes(2));
//设置主节点超时时间
createIndexRequest.setMasterTimeout(TimeValue.timeValueMinutes(1));
//在创建索引API返回响应之前等待的活动分片副本的数量,以int形式表示
createIndexRequest.waitForActiveShards(ActiveShardCount.from(2));
createIndexRequest.waitForActiveShards(ActiveShardCount.DEFAULT);
//操作索引的客户端
IndicesClient indices = client.indices();
//执行创建索引库
CreateIndexResponse createIndexResponse = indices.create(createIndexRequest, RequestOptions.DEFAULT);
//得到响应(全部)
boolean acknowledged = createIndexResponse.isAcknowledged();
//得到响应 指示是否在超时前为索引中的每个分片启动了所需数量的碎片副本
boolean shardsAcknowledged = createIndexResponse.isShardsAcknowledged();
System.out.println("!!!!!!!!!!!!!!!!!!!!!!!!!!!" + acknowledged);
System.out.println(shardsAcknowledged);
}
2.异步创建:
//创建索引对象
CreateIndexRequest createIndexRequest = new CreateIndexRequest("itheima_book2");
//设置参数
createIndexRequest.settings(Settings.builder().put("number_of_shards", "1").put("number_of_replicas", "0"));
//指定映射1
createIndexRequest.mapping(" {\n" +
" \t\"properties\": {\n" +
" \"name\":{\n" +
" \"type\":\"keyword\"\n" +
" },\n" +
" \"description\": {\n" +
" \"type\": \"text\"\n" +
" },\n" +
" \"price\":{\n" +
" \"type\":\"long\"\n" +
" },\n" +
" \"pic\":{\n" +
" \"type\":\"text\",\n" +
" \"index\":false\n" +
" }\n" +
" \t}\n" +
"}", XContentType.JSON);
//监听方法
ActionListener<CreateIndexResponse> listener =
new ActionListener<CreateIndexResponse>() {
@Override
public void onResponse(CreateIndexResponse createIndexResponse) {
System.out.println("!!!!!!!!创建索引成功");
System.out.println(createIndexResponse.toString());
}
@Override
public void onFailure(Exception e) {
System.out.println("!!!!!!!!创建索引失败");
e.printStackTrace();
}
};
//操作索引的客户端
IndicesClient indices = client.indices();
//执行创建索引库
indices.createAsync(createIndexRequest, RequestOptions.DEFAULT, listener);
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
3.SpringData自动创建
// 可以通过注解@Document @Filed @Setting 来自定义配置
@Document(indexName = "book")
@Data
public class Book {
// 必须有 id,这里的 id 是全局唯一的标识,等同于 es 中的"_id"
@Id
private String id;
@Field(type = FieldType.Keyword, analyzer = "ik_max_word",searchAnalyzer= "ik_smart")
private String bookName;
@Field(type = FieldType.Text, analyzer = "ik_max_word",searchAnalyzer= "ik_smart")
private String bookDesc;
@Field(type = FieldType.Double, index = false)
private Double bookPrice;
@Field(type = FieldType.Long, index = false)
private Integer bookNumber;
}
基本语法:
请求方式:GET
请求路径:/索引库名
请求参数:无
格式:
GET /索引库名
示例:
GET /xianyu
{
"xianyu"【索引名】: {
"aliases"【别名】: {},
"mappings"【映射】: {},
"settings"【设置】: {
"index"【设置 - 索引】: {
"creation_date"【设置 - 索引 - 创建时间】: "1614265373911",
"number_of_shards"【设置 - 索引 - 主分片数量】: "1",
"number_of_replicas"【设置 - 索引 - 副分片数量】: "1",
"uuid"【设置 - 索引 - 唯一标识】: "eI5wemRERTumxGCc1bAk2A",
"version"【设置 - 索引 - 版本】: {
"created": "7080099"
},
"provided_name"【设置 - 索引 - 名称】: "xianyu"
}
}
}
}
查询所有的索引库
#查询所有的索引库
GET /_cat/indices?v
表头 | 含义 |
---|---|
health 当前服务器健康状态: | green(集群完整) yellow(单点正常、集群不完整)red(单点不正常) |
status | 索引打开、关闭状态 |
index | 索引名 |
uuid | 索引统一编号 |
pri | 主分片数量 |
rep | 副本数量 |
docs.count | 可用文档数量 |
docs.deleted | 文档删除状态(逻辑删除) |
store.size | 主分片和副分片整体占空间大小 |
pri.store.size | 主分片占空间大小 |
RestAPI
// 查询索引 - 请求对象
GetIndexRequest request = new GetIndexRequest("hotel");
// 发送请求,获取响应
GetIndexResponse response = client.indices().get(request,
RequestOptions.DEFAULT);
倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping。
虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。
语法说明:
PUT /索引库名/_mapping
{
"properties": {
"新字段名":{
"type": "integer"
}
}
}
语法:
请求方式:DELETE
请求路径:/索引库名
请求参数:无
格式:
DELETE /索引库名
RestAPI:
//创建删除请求
DeleteIndexRequest request = new DeleteIndexRequest("hotel");
//发送请求
client.indices().delete(request,RequestOptions.DEFAULT);
异步删除
//删除索引对象
DeleteIndexRequest deleteIndexRequest = new DeleteIndexRequest("itheima_book2");
//操作索引的客户端
IndicesClient indices = client.indices();
//监听方法
ActionListener<AcknowledgedResponse> listener =
new ActionListener<AcknowledgedResponse>() {
@Override
public void onResponse(AcknowledgedResponse deleteIndexResponse) {
System.out.println("!!!!!!!!删除索引成功");
System.out.println(deleteIndexResponse.toString());
}
@Override
public void onFailure(Exception e) {
System.out.println("!!!!!!!!删除索引失败");
e.printStackTrace();
}
};
//执行删除索引
indices.deleteAsync(deleteIndexRequest, RequestOptions.DEFAULT, listener);
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
OpenIndexRequest request = new OpenIndexRequest("itheima_book");
OpenIndexResponse openIndexResponse = client.indices().open(request, RequestOptions.DEFAULT);
boolean acknowledged = openIndexResponse.isAcknowledged();
System.out.println("!!!!!!!!!"+acknowledged);
CloseIndexRequest request = new CloseIndexRequest("index");
AcknowledgedResponse closeIndexResponse = client.indices().close(request, RequestOptions.DEFAULT);
boolean acknowledged = closeIndexResponse.isAcknowledged();
System.out.println("!!!!!!!!!"+acknowledged);
GetIndexRequest request = new GetIndexRequest("itheima_book");
request.local(false);//从主节点返回本地信息或检索状态
request.humanReadable(true);//以适合人类的格式返回结果
request.includeDefaults(false);//是否返回每个索引的所有默认设置
boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
System.out.println(exists);
语法:
POST /索引库名/_doc/文档id
{
"字段1": "值1",
"字段2": "值2",
"字段3": {
"子属性1": "值3",
"子属性2": "值4"
},
// ...
}
示例:
POST /xianyu/_doc/1 不加id会随机生成一个id
{
"name":"咸鱼",
"age":23
}
{
"_index" : "xianyu", //索引名
"_type" : "_doc", //类型
"_id" : "1", //唯一标识 类似主键
"_version" : 1, //版本
"result" : "created", //结果 表示创建成功
"_shards" : { //分片
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 0,
"_primary_term" : 1
}
RESTAPI
// 1.根据id查询酒店数据
Hotel hotel = hotelService.getById(61083L);
// 2.转换为文档类型
HotelDoc hotelDoc = new HotelDoc(hotel);
// 3.将HotelDoc转json
String jsonString = JSON.toJSONString(hotelDoc);
// 1.准备Request对象
IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());
// 2.准备Json文档
request.source(jsonString, XContentType.JSON);
// 3.发送请求
client.index(request, RequestOptions.DEFAULT);
同步
// 1构建请求
IndexRequest request=new IndexRequest("test_posts");
request.id("3");
// =======================构建文档============================
// 构建方法1
String jsonString="{\n" +
" \"user\":\"tomas J\",\n" +
" \"postDate\":\"2019-07-18\",\n" +
" \"message\":\"trying out es3\"\n" +
"}";
request.source(jsonString, XContentType.JSON);
// 构建方法2
// Map jsonMap=new HashMap<>();
// jsonMap.put("user", "tomas");
// jsonMap.put("postDate", "2019-07-18");
// jsonMap.put("message", "trying out es2");
// request.source(jsonMap);
// 构建方法3
// XContentBuilder builder= XContentFactory.jsonBuilder();
// builder.startObject();
// {
// builder.field("user", "tomas");
// builder.timeField("postDate", new Date());
// builder.field("message", "trying out es2");
// }
// builder.endObject();
// request.source(builder);
// 构建方法4
// request.source("user","tomas",
// "postDate",new Date(),
// "message","trying out es2");
//
// ========================可选参数===================================
//设置超时时间
request.timeout(TimeValue.timeValueSeconds(1));
request.timeout("1s");
//自己维护版本号
// request.version(2);
// request.versionType(VersionType.EXTERNAL);
// 2执行
//同步
IndexResponse indexResponse = client.index(request, RequestOptions.DEFAULT);
异步
//异步
// ActionListener listener=new ActionListener() {
// @Override
// public void onResponse(IndexResponse indexResponse) {
//
// }
//
// @Override
// public void onFailure(Exception e) {
//
// }
// };
// client.indexAsync(request,RequestOptions.DEFAULT, listener );
// try {
// Thread.sleep(5000);
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
// 3获取结果
String index = indexResponse.getIndex();
String id = indexResponse.getId();
//获取插入的类型
if(indexResponse.getResult()== DocWriteResponse.Result.CREATED){
DocWriteResponse.Result result=indexResponse.getResult();
System.out.println("CREATED:"+result);
}else if(indexResponse.getResult()== DocWriteResponse.Result.UPDATED){
DocWriteResponse.Result result=indexResponse.getResult();
System.out.println("UPDATED:"+result);
}
ReplicationResponse.ShardInfo shardInfo = indexResponse.getShardInfo();
if(shardInfo.getTotal()!=shardInfo.getSuccessful()){
System.out.println("处理成功的分片数少于总分片!");
}
if(shardInfo.getFailed()>0){
for (ReplicationResponse.ShardInfo.Failure failure:shardInfo.getFailures()) {
String reason = failure.reason();//处理潜在的失败原因
System.out.println(reason);
}
}
}
语法:
GET /{索引库名称}/_doc/{id}
GET /xianyu/_doc/1
{
"_index" : "xianyu",
"_type" : "_doc",
"_id" : "1",
"_version" : 1,
"_seq_no" : 0,
"_primary_term" : 1,
"found" : true,
"_source" : {
"name" : "咸鱼",
"age" : 23
}
}
RESTAPI
GetRequest request = new GetRequest("hotel","61083");
//得到响应
GetResponse response = client.get(request, RequestOptions.DEFAULT);
String json = response.getSourceAsString();
//解析文档
HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
//构建请求
GetRequest getRequest = new GetRequest("test_post", "1");
//========================可选参数 start======================
//为特定字段配置_source_include
// String[] includes = new String[]{"user", "message"};
// String[] excludes = Strings.EMPTY_ARRAY;
// FetchSourceContext fetchSourceContext = new FetchSourceContext(true, includes, excludes);
// getRequest.fetchSourceContext(fetchSourceContext);
//为特定字段配置_source_excludes
// String[] includes1 = new String[]{"user", "message"};
// String[] excludes1 = Strings.EMPTY_ARRAY;
// FetchSourceContext fetchSourceContext1 = new FetchSourceContext(true, includes1, excludes1);
// getRequest.fetchSourceContext(fetchSourceContext1);
//设置路由
// getRequest.routing("routing");
// ========================可选参数 end=====================
//查询 同步查询
GetResponse getResponse = client.get(getRequest, RequestOptions.DEFAULT);
//异步查询
// ActionListener listener = new ActionListener() {
// //查询成功时的立马执行的方法
// @Override
// public void onResponse(GetResponse getResponse) {
// long version = getResponse.getVersion();
// String sourceAsString = getResponse.getSourceAsString();//检索文档(String形式)
// System.out.println(sourceAsString);
// }
//
// //查询失败时的立马执行的方法
// @Override
// public void onFailure(Exception e) {
// e.printStackTrace();
// }
// };
// //执行异步请求
// client.getAsync(getRequest, RequestOptions.DEFAULT, listener);
// try {
// Thread.sleep(5000);
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
// 获取结果
if (getResponse.isExists()) {
long version = getResponse.getVersion();
String sourceAsString = getResponse.getSourceAsString();//检索文档(String形式)
System.out.println(sourceAsString);
byte[] sourceAsBytes = getResponse.getSourceAsBytes();//以字节接受
Map<String, Object> sourceAsMap = getResponse.getSourceAsMap();
System.out.println(sourceAsMap);
}else {
}
}
语法:
DELETE /{索引库名称}/_doc/{id}
DELETE /xianyu/_doc/1
{
"_index" : "xianyu",
"_type" : "_doc",
"_id" : "1",
"_version" : 2,
"result" : "deleted",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 1,
"_primary_term" : 1
}
条件删除文档
POST /xianyu/_delete_by_query
{
"query":{
"match":{
"age":23
}
}
}
RESTAPI
// 1.准备Request
DeleteRequest request = new DeleteRequest("hotel", "61083");
// 2.发送请求
client.delete(request, RequestOptions.DEFAULT);
修改有两种方式:
语法:
PUT /{索引库名}/_doc/文档id
{
"字段1": "值1",
"字段2": "值2",
// ... 略
}
增量修改是只修改指定id匹配的文档中的部分字段。
语法:
POST /{索引库名}/_update/文档id
{
"doc": {
"字段名": "新的值",
}
}
POST /xianyu/_update/1
{
"doc": {
"no":"20183033523"
}
}
{
"_index" : "xianyu",
"_type" : "_doc",
"_id" : "1",
"_version" : 2,
"result" : "updated",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 3,
"_primary_term" : 1
}
RESTAPI
// 1.准备Request
UpdateRequest request = new UpdateRequest("hotel", "61083");
// 2.准备请求参数
request.doc(
"price", "952",
"starName", "四钻"
);
// 3.发送请求
client.update(request, RequestOptions.DEFAULT);
1构建请求
UpdateRequest request = new UpdateRequest("test_posts", "3");
Map<String, Object> jsonMap = new HashMap<>();
jsonMap.put("user", "tomas JJ");
request.doc(jsonMap);
//===============================可选参数==========================================
request.timeout("1s");//超时时间
//重试次数
request.retryOnConflict(3);
//设置在继续更新之前,必须激活的分片数
// request.waitForActiveShards(2);
//所有分片都是active状态,才更新
// request.waitForActiveShards(ActiveShardCount.ALL);
// 2执行
// 同步
UpdateResponse updateResponse = client.update(request, RequestOptions.DEFAULT);
// 异步
// 3获取数据
updateResponse.getId();
updateResponse.getIndex();
//判断结果
if (updateResponse.getResult() == DocWriteResponse.Result.CREATED) {
DocWriteResponse.Result result = updateResponse.getResult();
System.out.println("CREATED:" + result);
} else if (updateResponse.getResult() == DocWriteResponse.Result.UPDATED) {
DocWriteResponse.Result result = updateResponse.getResult();
System.out.println("UPDATED:" + result);
}else if(updateResponse.getResult() == DocWriteResponse.Result.DELETED){
DocWriteResponse.Result result = updateResponse.getResult();
System.out.println("DELETED:" + result);
}else if (updateResponse.getResult() == DocWriteResponse.Result.NOOP){
//没有操作
DocWriteResponse.Result result = updateResponse.getResult();
System.out.println("NOOP:" + result);
}
Bulk 操作解释将文档的增删改查一些列操作,通过一次请求全都做完。减少网络传输次数。
语法:
POST /_bulk
{"action": {"metadata"}}
{"data"}
如下操作,删除5,新增14,修改2。
POST /_bulk
{ "delete": { "_index": "test_index", "_id": "5" }}
{ "create": { "_index": "test_index", "_id": "14" }}
{ "test_field": "test14" }
{ "update": { "_index": "test_index", "_id": "2"} }
{ "doc" : {"test_field" : "bulk test"} }
// 1创建请求
BulkRequest request = new BulkRequest();
// request.add(new IndexRequest("post").id("1").source(XContentType.JSON, "field", "1"));
// request.add(new IndexRequest("post").id("2").source(XContentType.JSON, "field", "2"));
request.add(new UpdateRequest("post","2").doc(XContentType.JSON, "field", "3"));
request.add(new DeleteRequest("post").id("1"));
// 2执行
BulkResponse bulkResponse = client.bulk(request, RequestOptions.DEFAULT);
for (BulkItemResponse itemResponse : bulkResponse) {
DocWriteResponse itemResponseResponse = itemResponse.getResponse();
switch (itemResponse.getOpType()) {
case INDEX:
case CREATE:
IndexResponse indexResponse = (IndexResponse) itemResponseResponse;
indexResponse.getId();
System.out.println(indexResponse.getResult());
break;
case UPDATE:
UpdateResponse updateResponse = (UpdateResponse) itemResponseResponse;
updateResponse.getIndex();
System.out.println(updateResponse.getResult());
break;
case DELETE:
DeleteResponse deleteResponse = (DeleteResponse) itemResponseResponse;
System.out.println(deleteResponse.getResult());
break;
}
}
```java
// Book : 实体类
// String : 主键类型
@Repository
public interface BookRepository extends ElasticsearchRepository<Book,String> {
List<Book> findByBookNameLike(String bookName);
}
Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:
查询所有:查询出所有数据,一般测试用。例如:match_all
全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
地理(geo)查询:根据经纬度查询。例如:
复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
查询基本语法:
GET /indexName/_search
{
"query": {
"查询类型": {
"查询条件": "条件值"
}
}
}
// 查询所有
GET /indexName/_search
{
"query": {
"match_all": {
}
}
}
//1.创建请求
SearchRequest request = new SearchRequest("hotel");
//2.构建DSL
request.source().query(QueryBuilders.matchAllQuery());
//3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//4.解析响应
extractResponse(response);
结果解析:
//将响应结果解析
private void extractResponse(SearchResponse response) {
SearchHits searchHits = response.getHits();
//获取总条数
long total = searchHits.getTotalHits().value;
System.out.println("文档总条数为"+total);
//获取文档数组
SearchHit[] hits = searchHits.getHits();
// Arrays.stream(hits).forEach(v-> JSON.parseObject(v.getSourceAsString(),HotelDoc.class));
for (SearchHit hit : hits) {
// 获取文档source
String json = hit.getSourceAsString();
// 反序列化
HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
log.info("酒店数据:{}",hotelDoc);
}
}
使用场景
全文检索查询的基本流程如下:
比较常用的场景包括:
因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。
基本语法
常见的全文检索查询包括:
match查询语法如下:
GET /indexName/_search
{
"query": {
"match": {
"FIELD": "TEXT"
}
}
}
#匹配查询
GET /hotel/_search
{
"query": {
"match": {
"city": "上海"
}
}
}
RestAPI
//创建请求
SearchRequest request = new SearchRequest("hotel");
//2.构建DSL
request.source().query(QueryBuilders.matchQuery("city","上海"));
//3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//4.解析响应
extractResponse(response);
mulit_match语法如下:
GET /indexName/_search
{
"query": {
"multi_match": {
"query": "TEXT",
"fields": ["FIELD1", " FIELD12"]
}
}
}
#多字段匹配查询
注意:多字段匹配性能较低一般涉及到多字段搜索会使用copyto到一个字段进行查询
GET /hotel/_search
{
"query": {
"multi_match": {
"query": "汉庭",
"fields": ["name","business"]
}
}
}
RestAPI
//1.创建请求
SearchRequest request = new SearchRequest("hotel");
//2.构建DSL
request.source().query(QueryBuilders.multiMatchQuery("汉庭","name","business"));
//3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//4.解析响应
extractResponse(response);
精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:
term查询
因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。
语法说明:
// term查询
GET /indexName/_search
{
"query": {
"term": {
"FIELD": {
"value": "VALUE"
}
}
}
}
#精确查询
GET /hotel/_search
{
"query": {
"term": {
"brand": {
"value": "汉庭"
}
}
}
}
RestAPI
//1.创建请求
SearchRequest request = new SearchRequest("hotel");
//2.构建DSL
request.source().query(QueryBuilders.termQuery("city","上海"));
//3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//4.解析响应
extractResponse(response);
range查询
范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。
基本语法:
// range查询
GET /indexName/_search
{
"query": {
"range": {
"FIELD": {
"gte": 10, // 这里的gte代表大于等于,gt则代表大于
"lte": 20 // lte代表小于等于,lt则代表小于
}
}
}
}
#范围查询
GET /hotel/_search
{
"query": {
"range": {
"price": {
"gte": 300,
"lte": 400
}
}
}
}
RestAPI
//1.创建请求
SearchRequest request = new SearchRequest("hotel");
//2.构建DSL
request.source().query(QueryBuilders.rangeQuery("price").gt(200).lt(400));
//3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//4.解析响应
extractResponse(response);
terms查询
terms 查询和 term 查询一样,但它允许你指定多值进行匹配。如果这个字段包含了指定值中的任何一个值,那么这个文档满足条件,类似于 mysql 的 in。
// term查询
GET /indexName/_search
{
"query": {
"term": {
"FIELD": {
"value": ["VALUE1","VALUE2"]
}
}
}
}
GET /hotel/_search
{
"query": {
"terms": {
"city": [
"上海",
"北京"
]
}
}
}
RestAPI
//1.创建请求
SearchRequest request = new SearchRequest("hotel");
//2.构建DSL
request.source().query(QueryBuilders.termsQuery("city","北京","上海"));
//3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//4.解析响应
extractResponse(response);
exist query 查询有某些字段值的文档
GET /_search
{
"query": {
"exists": {
"field": "join_date"
}
}
}
默认情况下,Elasticsearch 在搜索的结果中,会把文档中保存在_source 的所有字段都返回。如果我们只想获取其中的部分字段,我们可以添加_source
的过滤。
#指定筛选字段
GET /hotel/_search
{
"_source": ["address","city"] ,
"query": {
"term": {
"city": {
"value": "上海"
}
}
}
}
GET /hotel/_search
{
"_source": {
//"excludes": , ["address","city"],
"includes": ["brand","price"]
},
"query": {
"term": {
"city": {
"value": "上海"
}
}
}
}
RestAPI
//1.创建请求
SearchRequest request = new SearchRequest("hotel");
//查询字段过滤
String[] includes={};
String[] excludes={"brand","location"};
//2.构建DSL
request.source().query(QueryBuilders.termQuery("city","上海")).fetchSource(includes,excludes);
//3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//4.解析响应
extractResponse(response);
所谓的地理坐标查询,其实就是根据经纬度查询。
常见的使用场景包括:
矩形范围查询
矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:
查询时,需要指定矩形的左上、右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。
语法如下:
// geo_bounding_box查询
GET /indexName/_search
{
"query": {
"geo_bounding_box": {
"FIELD": {
"top_left": { // 左上点
"lat": 31.1,
"lon": 121.5
},
"bottom_right": { // 右下点
"lat": 30.9,
"lon": 121.7
}
}
}
}
}
附近查询
附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。
换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:
语法说明:
// geo_distance 查询
GET /indexName/_search
{
"query": {
"geo_distance": {
"distance": "15km", // 半径
"FIELD": "31.21,121.5" // 圆心
}
}
}
#地理坐标查询 半径5km范围内的
GET /hotel/_search
{
"query": {
"geo_distance": {
"distance": "5km",
"location": "31.21,121.5"
}
}
}
RestAPI
//1.创建请求
SearchRequest request = new SearchRequest("hotel");
//2.构建DSL
request.source().query(QueryBuilders
.geoDistanceQuery("location")
.distance("5", DistanceUnit.KILOMETERS)
.point(31.21,121.5));
//3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//4.解析响应
extractResponse(response);
复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:
相关性算分
当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。
例如,我们搜索 “虹桥如家”,结果如下:
[
{
"_score" : 17.850193,
"_source" : {
"name" : "虹桥如家酒店真不错",
}
},
{
"_score" : 12.259849,
"_source" : {
"name" : "外滩如家酒店真不错",
}
},
{
"_score" : 11.91091,
"_source" : {
"name" : "迪士尼如家酒店真不错",
}
}
]
在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:
在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:
TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:
算分函数查询
根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。
以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。
要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。
1)语法说明
function score 查询中包含四部分内容:
function score的运行流程如下:
因此,其中的关键点是:
GET /hotel/_search
{
"query": {
"function_score": {
"query": { .... }, // 原始查询,可以是任意条件
"functions": [ // 算分函数
{
"filter": { // 满足的条件,品牌必须是如家
"term": {
"brand": "如家"
}
},
"weight": 2 // 算分权重为2
}
],
"boost_mode": "sum" // 加权模式,求和
}
}
}
返回包含与搜索字词相似的字词的文档。
IDs
GET /book/_search
{
"query": {
"ids" : {
"values" : ["1", "4", "100"]
}
}
}
RestAPI
// 1构建搜索请求
SearchRequest searchRequest = new SearchRequest("book");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.idsQuery().addIds("1","4","100"));
searchRequest.source(searchSourceBuilder);
//2执行搜索
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
//3获取结果
SearchHits hits = searchResponse.getHits();
prefix 前缀查询
GET /book/_search
{
"query": {
"prefix": {
"description": {
"value": "spring"
}
}
}
}
regexp query 正则查询
GET /book/_search
{
"query": {
"regexp": {
"description": {
"value": "j.*a",
"flags" : "ALL",
"max_determinized_states": 10000,
"rewrite": "constant_score"
}
}
}
}
Fuzzy query
GET /hotel/_search
{
"query": {
"fuzzy": {
"name": {
"value": "酒店",
"fuzziness": 0.8
}
}
}
}
RestAPI
//1.创建请求
SearchRequest request = new SearchRequest("hotel");
//2.构建DSL
request.source().query(QueryBuilders.fuzzyQuery("name","酒店").fuzziness(Fuzziness.AUTO));
//3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//4.解析响应
extractResponse(response);
布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:
比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:
每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。
需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:
语法所示:
GET /hotel/_search
{
"query": {
"bool": {
"must": [
{"term": {"city": "上海" }}
],
"should": [
{"term": {"brand": "皇冠假日" }},
{"term": {"brand": "华美达" }}
],
"must_not": [
{ "range": { "price": { "lte": 500 } }}
],
"filter": [
{ "range": {"score": { "gte": 45 } }}
]
}
}
}
RestAPI
SearchRequest request = new SearchRequest("hotel");
// 2.1.准备BooleanQuery
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
boolQuery.filter(QueryBuilders.rangeQuery("score").gte(45));
boolQuery.must(QueryBuilders.termQuery("city","上海"));
boolQuery.should(QueryBuilders.termQuery("brand","华美达"));
boolQuery.should(QueryBuilders.termQuery("brand","皇冠假日"));
boolQuery.mustNot(QueryBuilders.rangeQuery("price").lte(500));
request.source().query(boolQuery);
//发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//解析结果
extractResponse(response);
2)示例
需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。
分析:
# 复合查询
GET /hotel/_search
{
"query": {
"bool": {
"must": [
{
"term": {
"brand": {
"value": "如家"
}
}
}
],
"must_not": [
{
"range": {
"price": {
"gt": 400
}
}
}
],
"filter": [
{
"geo_distance": {
"distance": "10km",
"location": {
"lat": 31.21,
"lon": 121.5
}
}
}
]
}
}
}
RestAPI
SearchRequest request = new SearchRequest("hotel");
// 2.1.准备BooleanQuery
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
boolQuery.filter(QueryBuilders
.geoDistanceQuery("location")
.distance(10,DistanceUnit.KILOMETERS)
.point(31.21,121.5));
boolQuery.must(QueryBuilders.termQuery("brand","如家"));
boolQuery.mustNot(QueryBuilders.rangeQuery("price").gt(500));
request.source().query(boolQuery);
//发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//解析结果
extractResponse(response);
filter与query对比
filter:仅仅只是按照搜索条件过滤出需要的数据而已,不计算任何相关度分数,对相关度没有任何影响。
query:会去计算每个document相对于搜索条件的相关度,并按照相关度进行排序。
应用场景:
一般来说,如果你是在进行搜索,需要将最匹配搜索条件的数据先返回,那么用query 如果你只是要根据一些条件筛选出一部分数据,不关注其排序,那么用filter
filter与query性能
filter,不需要计算相关度分数,不需要按照相关度分数进行排序,同时还有内置的自动cache最常使用filter的数据
query,相反,要计算相关度分数,按照分数进行排序,而且无法cache结果
elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。
1.普通单字段排序
keyword、数值、日期类型排序的语法基本一致。
{
"query": {
...条件
},
"sort": [{
"FIELD": {
"order":"desc"
}
}]
}
2.普通多字段排序
GET /hotel/_search
{
"query": {
"match_all": {
}
},
"sort": [
{
"price": {
"order": "asc"
},
"score": {
"order": "asc"
}
}
]
}
RestAPI
//1.创建请求
SearchRequest request = new SearchRequest("hotel");
//2.构建DSL
request.source()
.query(QueryBuilders.matchAllQuery())
.sort("price",SortOrder.ASC)
.sort("score",SortOrder.ASC);
//3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//4.解析响应
extractResponse(response);
3.地理坐标排序
语法说明:
GET /indexName/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"_geo_distance" : {
"FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
"order" : "asc", // 排序方式
"unit" : "km" // 排序的距离单位
}
}
]
}
这个查询的含义是:
示例: 需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序
RestAPI
//1.创建请求
SearchRequest request = new SearchRequest("hotel");
//2.构建DSL
request.source()
.query(QueryBuilders.matchAllQuery())
.sort(SortBuilders
.geoDistanceSort("location",31.5,121.5)
.order(SortOrder.ASC)
.unit(DistanceUnit.KILOMETERS));
//3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//4.解析响应
extractResponse(response);
elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:
类似于mysql中的limit ?, ?
基本分页语法:
GET /hotel/_search
{
"query": {
"match_all": {}
},
"from": 0, // 分页开始的位置,默认为0
"size": 10, // 期望获取的文档总数
"sort": [
{"price": "asc"}
]
}
RestAPI
//创建请求
SearchRequest request = new SearchRequest("hotel");
//构建DSL
request.source().query(QueryBuilders
.matchAllQuery())
.sort("price",SortOrder.ASC)
.from(0)
.size(10);
//发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//解析响应
extractResponse(response);
深度分页问题
现在,我要查询990~1000的数据,查询逻辑要这么写:
GET /hotel/_search
{
"query": {
"match_all": {}
},
"from": 990, // 分页开始的位置,默认为0
"size": 10, // 期望获取的文档总数
"sort": [
{"price": "asc"}
]
}
这里是查询990开始的数据,也就是 第990~第1000条 数据。
不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:
查询TOP1000,如果es是单点模式,这并无太大影响。
但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。
因为节点A的TOP200,在另一个节点可能排到10000名以外了。
因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。
当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。
针对深度分页,ES提供了两种解决方案,官方文档:
分页查询的常见实现方案以及优缺点:
from + size
:
after search
:
scroll
:
高亮原理
什么是高亮显示呢?
我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:
高亮显示的实现分为两步:
标签
标签编写CSS样式实现高亮
高亮的语法:
GET /hotel/_search
{
"query": {
"match": {
"FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询
}
},
"highlight": {
"fields": { // 指定要高亮的字段
"FIELD": {
"pre_tags": "", // 用来标记高亮字段的前置标签
"post_tags": "" // 用来标记高亮字段的后置标签
}
}
}
}
注意:
// 1.准备Request
SearchRequest request = new SearchRequest("hotel");
// 2.准备DSL
// 2.1.query
request.source().query(QueryBuilders.matchQuery("all", "如家"));
// 2.2.高亮
request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));
// 3.发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
// 4.解析响应
SearchHits searchHits = response.getHits();
// 4.1.获取总条数
long total = searchHits.getTotalHits().value;
System.out.println("共搜索到" + total + "条数据");
// 4.2.文档数组
SearchHit[] hits = searchHits.getHits();
// 4.3.遍历
for (SearchHit hit : hits) {
// 获取文档source
String json = hit.getSourceAsString();
// 反序列化
HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
// 获取高亮结果
Map<String, HighlightField> highlightFields = hit.getHighlightFields();
if (!CollectionUtils.isEmpty(highlightFields)) {
// 根据字段名获取高亮结果
HighlightField highlightField = highlightFields.get("name");
if (highlightField != null) {
// 获取高亮值
String name = highlightField.getFragments()[0].string();
// 覆盖非高亮结果
hotelDoc.setName(name);
}
}
System.out.println("hotelDoc = " + hotelDoc);
}
聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:
实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。
聚合的种类
聚合常见的有三类:
桶(Bucket)聚合:用来对文档做分组
TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
管道(pipeline)聚合:其它聚合的结果为基础做聚合
Bucket聚合语法如下:
GET /hotel/_search
{
"size": 0, // 设置size为0,结果中不包含文档,只包含聚合结果
"aggs": { // 定义聚合
"brandAgg": { //给聚合起个名字
"terms": { // 聚合的类型,按照品牌值聚合,所以选择term
"field": "brand", // 参与聚合的字段
"size": 20 // 希望获取的聚合结果数量
}
}
}
}
//创建请求
SearchRequest request = new SearchRequest("hotel");
//创建DSL
request.source().aggregation(AggregationBuilders
.terms("brand_agg")
.field("brand")
.size(20)).size(0);
//发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//解析响应
Aggregations aggregations = response.getAggregations();
//根据名称获取结果
Terms brand_agg = aggregations.get("brand_agg");
//拿到桶
List<? extends Terms.Bucket> buckets = brand_agg.getBuckets();
//遍历桶
for (Terms.Bucket bucket : buckets) {
System.out.println(bucket.getKeyAsString());
}
聚合结果排序
默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。
我们可以指定order属性,自定义聚合的排序方式:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"order": {
"_count": "asc" // 按照_count升序排列
},
"size": 20
}
}
}
}
SearchRequest request = new SearchRequest("hotel");
//创建DSL
request.source().aggregation(AggregationBuilders
.terms("brand_agg")
.field("brand")
.size(20)).size(0)
.sort("_count",SortOrder.ASC);
//发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
限定聚合范围
默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。
我们可以限定要聚合的文档范围,只要添加query条件即可:
GET /hotel/_search
{
"query": {
"range": {
"price": {
"lte": 200 // 只对200元以下的文档聚合
}
}
},
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
}
}
}
}
RestAPI
//创建请求
SearchRequest request = new SearchRequest("hotel");
//创建DSL
request.source().query(QueryBuilders.rangeQuery("price").lte(200));
request.source()
.aggregation(AggregationBuilders
.terms("brand_agg")
.field("brand")
.size(20)).size(0);
//发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//解析响应
Aggregations aggregations = response.getAggregations();
//根据名称获取结果
Terms brand_agg = aggregations.get("brand_agg");
//拿到桶
List<? extends Terms.Bucket> buckets = brand_agg.getBuckets();
//遍历桶
for (Terms.Bucket bucket : buckets) {
System.out.println(bucket.getKeyAsString());
}
Metric聚合语法
我们对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。
这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。
语法如下:
GET /hotel/_search
{
"size": 0,
"aggs": {
"brandAgg": {
"terms": {
"field": "brand",
"size": 20
},
"aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
"score_stats": { // 聚合名称
"stats": { // 聚合类型,这里stats可以计算min、max、avg等
"field": "score" // 聚合字段,这里是score
}
}
}
}
}
}
这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。
另外,我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:
RestAPI
//创建请求
SearchRequest request = new SearchRequest("hotel");
//创建DSL
request.source().aggregation(AggregationBuilders
.terms("brand_agg")
.field("brand")
.subAggregation(AggregationBuilders.stats("score_stats").field("score"))
.size(20))
.size(0);
//发送请求
SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//解析响应
Aggregations aggregations = response.getAggregations();
//根据名称获取结果
Terms brand_agg = aggregations.get("brand_agg");
//拿到桶
List<? extends Terms.Bucket> buckets = brand_agg.getBuckets();
//遍历桶
for (Terms.Bucket bucket : buckets) {
System.out.println(bucket.getKeyAsString());
}
电视案例
创建索引及映射
PUT /tvs
PUT /tvs/_search
{
"properties": {
"price": {
"type": "long"
},
"color": {
"type": "keyword"
},
"brand": {
"type": "keyword"
},
"sold_date": {
"type": "date"
}
}
}
插入数据
POST /tvs/_bulk
{ "index": {}}
{ "price" : 1000, "color" : "红色", "brand" : "长虹", "sold_date" : "2019-10-28" }
{ "index": {}}
{ "price" : 2000, "color" : "红色", "brand" : "长虹", "sold_date" : "2019-11-05" }
{ "index": {}}
{ "price" : 3000, "color" : "绿色", "brand" : "小米", "sold_date" : "2019-05-18" }
{ "index": {}}
{ "price" : 1500, "color" : "蓝色", "brand" : "TCL", "sold_date" : "2019-07-02" }
{ "index": {}}
{ "price" : 1200, "color" : "绿色", "brand" : "TCL", "sold_date" : "2019-08-19" }
{ "index": {}}
{ "price" : 2000, "color" : "红色", "brand" : "长虹", "sold_date" : "2019-11-05" }
{ "index": {}}
{ "price" : 8000, "color" : "红色", "brand" : "三星", "sold_date" : "2020-01-01" }
{ "index": {}}
{ "price" : 2500, "color" : "蓝色", "brand" : "小米", "sold_date" : "2020-02-12" }
GET /tvs/_search
{
"size" : 0,
"aggs" : {
"popular_colors" : {
"terms" : {
"field" : "color"
}
}
}
}
查询条件解析
size:只获取聚合结果,而不要执行聚合的原始数据
aggs:固定语法,要对一份数据执行分组聚合操作
popular_colors:就是对每个aggs,都要起一个名字,
terms:根据字段的值进行分组
field:根据指定的字段的值进行分组
返回
{
"took" : 18,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 8,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"popular_colors" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "红色",
"doc_count" : 4
},
{
"key" : "绿色",
"doc_count" : 2
},
{
"key" : "蓝色",
"doc_count" : 2
}
]
}
}
}
返回结果解析
hits.hits:我们指定了size是0,所以hits.hits就是空的
aggregations:聚合结果
popular_color:我们指定的某个聚合的名称
buckets:根据我们指定的field划分出的buckets
key:每个bucket对应的那个值
doc_count:这个bucket分组内,有多少个数据
数量,其实就是这种颜色的销量
每种颜色对应的bucket中的数据的默认的排序规则:按照doc_count降序排序
GET /tvs/_search
{
"size" : 0,
"aggs": {
"colors": {
"terms": {
"field": "color"
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
在一个aggs执行的bucket操作(terms),平级的json结构下,再加一个aggs,这个第二个aggs内部,同样取个名字,执行一个metric操作,avg,对之前的每个bucket中的数据的指定的field,price field,求一个平均值
返回:
{
"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 8,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"colors" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "红色",
"doc_count" : 4,
"avg_price" : {
"value" : 3250.0
}
},
{
"key" : "绿色",
"doc_count" : 2,
"avg_price" : {
"value" : 2100.0
}
},
{
"key" : "蓝色",
"doc_count" : 2,
"avg_price" : {
"value" : 2000.0
}
}
]
}
}
}
buckets,除了key和doc_count
avg_price:我们自己取的metric aggs的名字
value:我们的metric计算的结果,每个bucket中的数据的price字段求平均值后的结果
相当于sql: select avg(price) from tvs group by color
每个颜色下,平均价格及每个颜色下,每个品牌的平均价格
GET /tvs/_search
{
"size": 0,
"aggs": {
"group_by_color": {
"terms": {
"field": "color"
},
"aggs": {
"color_avg_price": {
"avg": {
"field": "price"
}
},
"group_by_brand": {
"terms": {
"field": "brand"
},
"aggs": {
"brand_avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
}
}
count:bucket,terms,自动就会有一个doc_count,就相当于是count
avg:avg aggs,求平均值
max:求一个bucket内,指定field值最大的那个数据
min:求一个bucket内,指定field值最小的那个数据
sum:求一个bucket内,指定field值的总和
GET /tvs/_search
{
"size" : 0,
"aggs": {
"colors": {
"terms": {
"field": "color"
},
"aggs": {
"avg_price": { "avg": { "field": "price" } },
"min_price" : { "min": { "field": "price"} },
"max_price" : { "max": { "field": "price"} },
"sum_price" : { "sum": { "field": "price" } }
}
}
}
}
GET /tvs/_search
{
"size" : 0,
"aggs":{
"price":{
"histogram":{
"field": "price",
"interval": 2000
},
"aggs":{
"income": {
"sum": {
"field" : "price"
}
}
}
}
}
}
histogram:类似于terms,也是进行bucket分组操作,接收一个field,按照这个field的值的各个范围区间,进行bucket分组操作
"histogram":{
"field": "price",
"interval": 2000
}
interval:2000,划分范围,02000,20004000,40006000,60008000,8000~10000,buckets
bucket有了之后,一样的,去对每个bucket执行avg,count,sum,max,min,等各种metric操作,聚合分析
date_histogram,按照我们指定的某个date类型的日期field,以及日期interval,按照一定的日期间隔,去划分bucket
min_doc_count:即使某个日期interval,2017-01-01~2017-01-31中,一条数据都没有,那么这个区间也是要返回的,不然默认是会过滤掉这个区间的
extended_bounds,min,max:划分bucket的时候,会限定在这个起始日期,和截止日期内
GET /tvs/_search
{
"size" : 0,
"aggs": {
"sales": {
"date_histogram": {
"field": "sold_date",
"interval": "month",
"format": "yyyy-MM-dd",
"min_doc_count" : 0,
"extended_bounds" : {
"min" : "2019-01-01",
"max" : "2020-12-31"
}
}
}
}
}
GET /tvs/_search
{
"size": 0,
"aggs": {
"group_by_sold_date": {
"date_histogram": {
"field": "sold_date",
"interval": "quarter",
"format": "yyyy-MM-dd",
"min_doc_count": 0,
"extended_bounds": {
"min": "2019-01-01",
"max": "2020-12-31"
}
},
"aggs": {
"group_by_brand": {
"terms": {
"field": "brand"
},
"aggs": {
"sum_price": {
"sum": {
"field": "price"
}
}
}
},
"total_sum_price": {
"sum": {
"field": "price"
}
}
}
}
}
}
搜索与聚合可以结合起来。
sql select count(*)
from tvs
where brand like “%小米%”
group by color
es aggregation,scope,任何的聚合,都必须在搜索出来的结果数据中之行,搜索结果,就是聚合分析操作的scope
GET /tvs/_search
{
"size": 0,
"query": {
"term": {
"brand": {
"value": "小米"
}
}
},
"aggs": {
"group_by_color": {
"terms": {
"field": "color"
}
}
}
}
aggregation,scope,一个聚合操作,必须在query的搜索结果范围内执行
出来两个结果,一个结果,是基于query搜索结果来聚合的; 一个结果,是对所有数据执行聚合的
GET /tvs/_search
{
"size": 0,
"query": {
"term": {
"brand": {
"value": "小米"
}
}
},
"aggs": {
"single_brand_avg_price": {
"avg": {
"field": "price"
}
},
"all": {
"global": {},
"aggs": {
"all_brand_avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
搜索+聚合
过滤+聚合
GET /tvs/_search
{
"size": 0,
"query": {
"constant_score": {
"filter": {
"range": {
"price": {
"gte": 1200
}
}
}
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
GET /tvs/_search
{
"size": 0,
"query": {
"term": {
"brand": {
"value": "小米"
}
}
},
"aggs": {
"recent_150d": {
"filter": {
"range": {
"sold_date": {
"gte": "now-150d"
}
}
},
"aggs": {
"recent_150d_avg_price": {
"avg": {
"field": "price"
}
}
}
},
"recent_140d": {
"filter": {
"range": {
"sold_date": {
"gte": "now-140d"
}
}
},
"aggs": {
"recent_140d_avg_price": {
"avg": {
"field": "price"
}
}
}
},
"recent_130d": {
"filter": {
"range": {
"sold_date": {
"gte": "now-130d"
}
}
},
"aggs": {
"recent_130d_avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
aggs.filter,针对的是聚合去做的
如果放query里面的filter,是全局的,会对所有的数据都有影响
但是,如果,比如说,你要统计,长虹电视,最近1个月的平均值; 最近3个月的平均值; 最近6个月的平均值
bucket filter:对不同的bucket下的aggs,进行filter
GET /tvs/_search
{
"size": 0,
"aggs": {
"group_by_color": {
"terms": {
"field": "color",
"order": {
"avg_price": "asc"
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
相当于sql子表数据字段可以立刻使用。
GET /tvs/_search
{
"size": 0,
"aggs": {
"group_by_color": {
"terms": {
"field": "color"
},
"aggs": {
"group_by_brand": {
"terms": {
"field": "brand",
"order": {
"avg_price": "desc"
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
}
}