配好了OpenCV的Python环境,OpenCV的Python环境搭建。于是迫不及待的想体验一下opencv的人脸识别,如下文。
必备知识
Haar-like
Haar-like百科释义。通俗的来讲,就是作为人脸特征即可。
Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。
opencv api
要想使用opencv,就必须先知道其能干什么,怎么做。于是API的重要性便体现出来了。就本例而言,使用到的函数很少,也就普通的读取图片,灰度转换,显示图像,简单的编辑图像罢了。
读取图片
只需要给出待操作的图片的路径即可。
importcv2
image= cv2.imread(imagepath)
灰度转换
灰度转换的作用就是:转换成灰度的图片的计算强度得以降低。
importcv2
gray= cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
画图
opencv 的强大之处的一个体现就是其可以对图片进行任意编辑,处理。
下面的这个函数最后一个参数指定的就是画笔的大小。
importcv2
cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)
显示图像
编辑完的图像要么直接的被显示出来,要么就保存到物理的存储介质。
importcv2
cv2.imshow("Image Title",image)
获取人脸识别训练数据看似复杂,其实就是对于人脸特征的一些描述,这样opencv在读取完数据后很据训练中的样品数据,就可以感知读取到的图片上的特征,进而对图片进行人脸识别。
importcv2
face_cascade= cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')
里卖弄的这个xml文件,就是opencv在GitHub上共享出来的具有普适的训练好的数据。我们可以直接的拿来使用。
探测人脸
说白了,就是根据训练的数据来对新图片进行识别的过程。
importcv2#探测图片中的人脸
faces=face_cascade.detectMultiScale(
gray,
scaleFactor= 1.15,
minNeighbors= 5,
minSize= (5,5),
flags=cv2.cv.CV_HAAR_SCALE_IMAGE
)
我们可以随意的指定里面参数的值,来达到不同精度下的识别。返回值就是opencv对图片的探测结果的体现。
处理人脸探测的结果
结束了刚才的人脸探测,我们就可以拿到返回值来做进一步的处理了。但这也不是说会多么的复杂,无非添加点特征值罢了。
importcv2print "发现{0}个人脸!".format(len(faces))for(x,y,w,h) infaces:
cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)
实例
有了刚才的基础,我们就可以完成一个简单的人脸识别的小例子了。
下面的这张图片将作为我们的检测依据。
人脸检测代码
#coding:utf-8
importsys
reload(sys)
sys.setdefaultencoding('utf8')#__author__ = '郭 璞'
#__date__ = '2016/9/5'
#__Desc__ = 人脸检测小例子,以圆圈圈出人脸
importcv2#待检测的图片路径imagepath= r'./heat.jpg'
#获取训练好的人脸的参数数据,这里直接从GitHub上使用默认值face_cascade= cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')#读取图片image=cv2.imread(imagepath)
gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)#探测图片中的人脸faces=face_cascade.detectMultiScale(
gray,
scaleFactor= 1.15,
minNeighbors= 5,
minSize= (5,5),
flags=cv2.cv.CV_HAAR_SCALE_IMAGE
)print "发现{0}个人脸!".format(len(faces))for(x,y,w,h) infaces:#cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)cv2.circle(image,((x+x+w)/2,(y+y+h)/2),w/2,(0,255,0),2)
cv2.imshow("Find Faces!",image)
cv2.waitKey(0)
输出图片:
输出结果:
D:\Software\Python2\python.exe E:/Code/Python/DataStructor/opencv/Demo.py
发现3个人脸!
详情见:案例参考
总结
回顾一下,这次的实验就是简单的对opencv的常用的api的使用,重点在于训练数据的使用和人脸探测的处理。
若有问题未能得到解决,搜索887934385交流群,最后,感谢观看!