【OpenCV 完整例程】76. OpenCV 实现图像傅里叶变换

【OpenCV 完整例程】76. OpenCV 实现图像傅里叶变换

欢迎关注 『OpenCV 完整例程 100 篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中

2.3 二维离散傅里叶变换(DFT)

对于二维图像处理,通常使用 x , y x, y x,y 表示离散的空间域坐标变量,用 u , v u,v u,v 表示离散的频率域变量。二维离散傅里叶变换(DFT)和反变换(IDFT)为:

F ( u , v ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( u x / M + v y / N ) f ( x , y ) = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 F ( u , v ) e j 2 π ( u x / M + v y / N ) \begin{aligned} F(u,v) &= \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j 2\pi (ux/M+vy/N)}\\ f(x,y) &= \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j 2\pi (ux/M+vy/N)} \end{aligned} F(u,v)f(x,y)=x=0M1y=0N1f(x,y)ej2π(ux/M+vy/N)=MN1u=0M1v=0N1F(u,v)ej2π(ux/M+vy/N)
二维离散傅里叶变换也可以用极坐标表示:
F ( u , v ) = R ( u , v ) + j I ( u , v ) = ∣ F ( u , v ) ∣ e j ϕ ( u , v ) F(u,v) = R(u,v) + j I(u,v) = |F(u,v)| e^{j \phi (u,v)} F(u,v)=R(u,v)+jI(u,v)=F(u,v)ejϕ(u,v)
傅里叶频谱(Fourier spectrum)为:
∣ F ( u , v ) ∣ = [ R 2 ( u , v ) + I 2 ( u , v ) ] 1 / 2 |F(u,v)| = [R^2(u,v) + I^2(u,v)]^{1/2} F(u,v)=[R2(u,v)+I2(u,v)]1/2
傅里叶相位谱(Fourier phase spectrum)为:
ϕ ( u , v ) = a r c t a n [ I ( u , v ) / R ( u , v ) ] \phi (u,v) = arctan[I(u,v)/R(u,v)] ϕ(u,v)=arctan[I(u,v)/R(u,v)]
傅里叶功率谱(Fourier power spectrum)为:
P ( u , v ) = ∣ F ( u , v ) ∣ 2 = R 2 ( u , v ) + I 2 ( u , v ) P(u,v) = |F(u,v)|^2 = R^2(u,v) + I^2(u,v) P(u,v)=F(u,v)2=R2(u,v)+I2(u,v)

空间取样和频率间隔是相互对应的,频率域所对应的离散变量间的间隔为: Δ u = 1 / M Δ T , Δ v = 1 / N Δ Z \Delta u = 1/M \Delta T,\Delta v = 1/N \Delta Z Δu=1/MΔTΔv=1/NΔZ。即:频域中样本之间的间隔,与空间样本之间的间隔及样本数量的乘积成反比。

空间域滤波器和频率域滤波器也是相互对应的,二维卷积定理是在空间域和频率域滤波之间建立等价关系的纽带:
( f ⋆ h ) ( x , y ) ⇔ ( F ⋅ H ) ( u , v ) (f \star h)(x,y) \Leftrightarrow (F \cdot H)(u,v) (fh)(x,y)(FH)(u,v)
这表明 F 和 H 分别是 f 和 h 的傅里叶变换;f 和 h 的空间卷积的傅里叶变换,是它们的变换的乘积。


2.5 OpenCV 实现图像傅里叶变换(cv.dft)

使用 OpenCV 中的 cv.dft() 函数也可以实现图像的傅里叶变换,cv.idft() 函数实现图像傅里叶逆变换。

函数说明:

	cv.dft(src[, dst[, flags[, nonzeroRows]]]) → dst
	cv.idft(src[, dst[, flags[, nonzeroRows]]]) → dst

参数说明:

  • src:输入图像,单通道灰度图像,使用 np.float32 格式
  • dst:输出图像,图像大小与 src 相同,数据类型由 flag 决定
  • flag:转换标识符
    • cv.DFT_INVERSE:用一维或二维逆变换取代默认的正向变换
    • cv.DFT_SCALE:缩放比例标识,根据元素数量求出缩放结果,常与DFT_INVERSE搭配使用
    • cv.DFT_ROWS: 对输入矩阵的每行进行正向或反向的傅里叶变换,常用于三维或高维变换等复杂操作
    • cv.DFT_COMPLEX_OUTPUT:对一维或二维实数数组进行正向变换,默认方法,结果是由 2个通道表示的复数阵列,第一通道是实数部分,第二通道是虚数部分
    • cv.DFT_REAL_OUTPUT:对一维或二维复数数组进行逆变换,结果通常是一个尺寸相同的复数矩阵

注意事项:

  1. 输入图像 src 是 np.float32 格式,如图像使用 np.uint8 格式则必须先转换 np.float32 格式。
  2. 默认方法 cv.DFT_COMPLEX_OUTPUT 时,输入 src 是 np.float32 格式的单通道二维数组,输出 dst 是 2个通道的二维数组,第一通道 dft[:,:,0] 是实数部分,第二通道 dft[:,:,1] 是虚数部分。
  3. 不能直接用于显示图像。可以使用 cv.magnitude() 函数将傅里叶变换的结果转换到灰度 [0,255]。
  4. idft(src, dst, flags) 等价于 dft(src, dst, flags=DFT_INVERSE)。
  5. OpenCV 实现傅里叶变换,计算速度比 Numpy 更快。

转换标识符为 cv.DFT_COMPLEX_OUTPUT 时,cv.dft() 函数的输出是 2个通道的二维数组,使用 cv.magnitude() 函数可以实现计算二维矢量的幅值 。

函数说明:

	cv.magnitude(x, y[, magnitude]) → dst

参数说明:

  • x:一维或多维数组,也表示复数的实部,浮点型
  • y:一维或多维数组,也表示复数的虚部,浮点型,数组大小必须与 x 相同
  • dst:输出数组,数组大小和数据类型与 x 相同,运算公式为:

d s t ( I ) = x ( I ) 2 + y ( I ) 2 dst(I) = \sqrt{x(I)^2 + y(I)^2} dst(I)=x(I)2+y(I)2

傅里叶变换及相关操作的取值范围可能不适于图像显示,需要进行归一化处理。 OpenCV 中的 cv.normalize() 函数可以实现图像的归一化。

函数说明:

	cv.normalize(src, dst[, alpha[, beta[, norm_type[, dtype[, mask]]]]]) → dst

参数说明:

  • src:输入图像
  • dst:输出结果,与输入图像同尺寸同类型
  • alpha:归一化后的最小值,可选项,默认值为0
  • beta:归一化后的最大值,可选项,默认值为1
  • norm_type:归一化类型
    • NORM_INF:Linf 范数(绝对值的最大值)
    • NORM_L1:L1 范数(绝对值的和)
    • NORM_L2:L2 范数(欧几里德距离),默认类型
    • NORM_MINMAX:线性缩放,常用类型
  • dtype:可选项,默认值 -1,表示输出矩阵与输入图像类型相同
  • mask:掩模遮罩,可选项,默认无遮罩

傅里叶变换在理论上需要 O ( M N ) 2 O(MN)^2 O(MN)2 次运算,非常耗时;快速傅里叶变换只需要 O ( M N l o g ( M N ) ) O(MN log (MN)) O(MNlog(MN)) 次运算就可以完成。

OpenCV 中的傅里叶变换函数 cv.dft() 对于行数和列数都可以分解为 2 p ∗ 3 q ∗ 5 r 2^p * 3^q * 5^r 2p3q5r 的矩阵的计算性能最好。为了提高运算性能,可以对原矩阵的右侧和下方补 0,以满足该分解条件。OpenCV 中的 cv.getOptimalDFTSize() 函数可以实现图像的最优 DFT 尺寸扩充,适用于 cv.dft() 和 np.fft.fft2()。

函数说明:

	cv.getOptimalDFTSize(versize) → retval

参数说明:

  • versize:数组大小
  • retval:DFT 扩充的最优数组大小

例程 8.11:二维图像的离散傅里叶变换(OpenCV)

    # 8.11:OpenCV 实现二维图像的离散傅里叶变换
    imgGray = cv2.imread("../images/Fig0424a.tif", flags=0)  # flags=0 读取为灰度图像

    # cv2.dft 实现图像的傅里叶变换
    imgFloat32 = np.float32(imgGray)  # 将图像转换成 float32
    dft = cv2.dft(imgFloat32, flags=cv2.DFT_COMPLEX_OUTPUT)  # 傅里叶变换
    dftShift = np.fft.fftshift(dft)  # 将低频分量移动到频域图像的中心

    # 幅度谱
    # ampSpe = np.sqrt(np.power(dft[:,:,0], 2) + np.power(dftShift[:,:,1], 2))
    dftAmp = cv2.magnitude(dft[:,:,0], dft[:,:,1])  # 幅度谱,未中心化
    dftShiftAmp = cv2.magnitude(dftShift[:,:,0], dftShift[:,:,1])  # 幅度谱,中心化
    dftAmpLog = np.log(1 + dftShiftAmp)  # 幅度谱对数变换,以便于显示
    # 相位谱
    phase = np.arctan2(dftShift[:,:,1], dftShift[:,:,0])  # 计算相位角(弧度制)
    dftPhi = phase / np.pi*180  # 将相位角转换为 [-180, 180]

    print("dftMag max={}, min={}".format(dftAmp.max(), dftAmp.min()))
    print("dftPhi max={}, min={}".format(dftPhi.max(), dftPhi.min()))
    print("dftAmpLog max={}, min={}".format(dftAmpLog.max(), dftAmpLog.min()))

    # cv2.idft 实现图像的逆傅里叶变换
    invShift = np.fft.ifftshift(dftShift)  # 将低频逆转换回图像四角
    imgIdft = cv2.idft(invShift)  # 逆傅里叶变换
    imgRebuild = cv2.magnitude(imgIdft[:,:,0], imgIdft[:,:,1])  # 重建图像

    plt.figure(figsize=(9, 6))
    plt.subplot(231), plt.title("Original image"), plt.axis('off')
    plt.imshow(imgGray, cmap='gray')
    plt.subplot(232), plt.title("DFT Phase"), plt.axis('off')
    plt.imshow(dftPhi, cmap='gray')
    plt.subplot(233), plt.title("Rebuild image with IDFT"), plt.axis('off')
    plt.imshow(imgRebuild, cmap='gray')
    plt.subplot(234), plt.title("DFT amplitude spectrum"), plt.axis('off')
    plt.imshow(dftAmp, cmap='gray')
    plt.subplot(235), plt.title("DFT-shift amplitude"), plt.axis('off')
    plt.imshow(dftShiftAmp, cmap='gray')
    plt.subplot(236), plt.title("Log-trans of DFT amp"), plt.axis('off')
    plt.imshow(dftAmpLog, cmap='gray')
    plt.tight_layout()
    plt.show()

【OpenCV 完整例程】76. OpenCV 实现图像傅里叶变换_第1张图片


(本节完)


版权声明:

youcans@xupt 原创作品,转载必须标注原文链接

Copyright 2021 youcans, XUPT

Crated:2022-1-20


欢迎关注 『OpenCV 完整例程 100 篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中

【OpenCV 完整例程】01. 图像的读取(cv2.imread)
【OpenCV 完整例程】02. 图像的保存(cv2.imwrite)
【OpenCV 完整例程】03. 图像的显示(cv2.imshow)
【OpenCV 完整例程】04. 用 matplotlib 显示图像(plt.imshow)
【OpenCV 完整例程】05. 图像的属性(np.shape)
【OpenCV 完整例程】06. 像素的编辑(img.itemset)
【OpenCV 完整例程】07. 图像的创建(np.zeros)
【OpenCV 完整例程】08. 图像的复制(np.copy)
【OpenCV 完整例程】09. 图像的裁剪(cv2.selectROI)
【OpenCV 完整例程】10. 图像的拼接(np.hstack)
【OpenCV 完整例程】11. 图像通道的拆分(cv2.split)
【OpenCV 完整例程】12. 图像通道的合并(cv2.merge)
【OpenCV 完整例程】13. 图像的加法运算(cv2.add)
【OpenCV 完整例程】14. 图像与标量相加(cv2.add)
【OpenCV 完整例程】15. 图像的加权加法(cv2.addWeight)
【OpenCV 完整例程】16. 不同尺寸的图像加法
【OpenCV 完整例程】17. 两张图像的渐变切换
【OpenCV 完整例程】18. 图像的掩模加法
【OpenCV 完整例程】19. 图像的圆形遮罩
【OpenCV 完整例程】20. 图像的按位运算
【OpenCV 完整例程】21. 图像的叠加
【OpenCV 完整例程】22. 图像添加非中文文字
【OpenCV 完整例程】23. 图像添加中文文字
【OpenCV 完整例程】23. 图像添加中文文字
【OpenCV 完整例程】24. 图像的仿射变换
【OpenCV 完整例程】25. 图像的平移
【OpenCV 完整例程】26. 图像的旋转(以原点为中心)
【OpenCV 完整例程】27. 图像的旋转(以任意点为中心)
【OpenCV 完整例程】28. 图像的旋转(直角旋转)
【OpenCV 完整例程】29. 图像的翻转(cv2.flip)
【OpenCV 完整例程】30. 图像的缩放(cv2.resize)
【OpenCV 完整例程】31. 图像金字塔(cv2.pyrDown)
【OpenCV 完整例程】32. 图像的扭变(错切)
【OpenCV 完整例程】33. 图像的复合变换
【OpenCV 完整例程】34. 图像的投影变换
【OpenCV 完整例程】35. 图像的投影变换(边界填充)
【OpenCV 完整例程】36. 直角坐标与极坐标的转换
【OpenCV 完整例程】37. 图像的灰度化处理和二值化处理
【OpenCV 完整例程】38. 图像的反色变换(图像反转)
【OpenCV 完整例程】39. 图像灰度的线性变换
【OpenCV 完整例程】40. 图像分段线性灰度变换
【OpenCV 完整例程】41. 图像的灰度变换(灰度级分层)
【OpenCV 完整例程】42. 图像的灰度变换(比特平面分层)
【OpenCV 完整例程】43. 图像的灰度变换(对数变换)
【OpenCV 完整例程】44. 图像的灰度变换(伽马变换)
【OpenCV 完整例程】45. 图像的灰度直方图
【OpenCV 完整例程】46. 直方图均衡化
【OpenCV 完整例程】47. 图像增强—直方图匹配
【OpenCV 完整例程】48. 图像增强—彩色直方图匹配
【OpenCV 完整例程】49. 图像增强—局部直方图处理
【OpenCV 完整例程】50. 图像增强—直方图统计量图像增强
【OpenCV 完整例程】51. 图像增强—直方图反向追踪
【OpenCV 完整例程】52. 图像的相关与卷积运算
【OpenCV 完整例程】53. Scipy 实现图像二维卷积
【OpenCV 完整例程】54. OpenCV 实现图像二维卷积
【OpenCV 完整例程】55. 可分离卷积核
【OpenCV 完整例程】56. 低通盒式滤波器
【OpenCV 完整例程】57. 低通高斯滤波器
【OpenCV 完整例程】58. 非线性滤波—中值滤波
【OpenCV 完整例程】59. 非线性滤波—双边滤波
【OpenCV 完整例程】60. 非线性滤波—联合双边滤波
【OpenCV 完整例程】61. 导向滤波(Guided filter)
【OpenCV 完整例程】62. 图像锐化——钝化掩蔽
【OpenCV 完整例程】63. 图像锐化——Laplacian 算子
【OpenCV 完整例程】64. 图像锐化——Sobel 算子
【OpenCV 完整例程】65. 图像锐化——Scharr 算子
【OpenCV 完整例程】66. 图像滤波之低通/高通/带阻/带通
【OpenCV 完整例程】67. 空间域图像增强的综合应用
【OpenCV 完整例程】68. 空间域图像增强的综合应用
【OpenCV 完整例程】69. 连续非周期信号的傅立叶系数
【OpenCV 完整例程】70. 一维连续函数的傅里叶变换
【OpenCV 完整例程】71. 连续函数的取样
【OpenCV 完整例程】72. 一维离散傅里叶变换
【OpenCV 完整例程】73. 二维连续傅里叶变换
【OpenCV 完整例程】74. 图像的抗混叠
【OpenCV 完整例程】75. Numpy 实现图像傅里叶变换
【OpenCV 完整例程】76. OpenCV 实现图像傅里叶变换

你可能感兴趣的:(OpenCV,完整例程,100,篇,opencv,python,计算机视觉,图像处理,算法)