欢迎关注 『OpenCV 完整例程 100 篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中
对于二维图像处理,通常使用 x , y x, y x,y 表示离散的空间域坐标变量,用 u , v u,v u,v 表示离散的频率域变量。二维离散傅里叶变换(DFT)和反变换(IDFT)为:
F ( u , v ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( u x / M + v y / N ) f ( x , y ) = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 F ( u , v ) e j 2 π ( u x / M + v y / N ) \begin{aligned} F(u,v) &= \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j 2\pi (ux/M+vy/N)}\\ f(x,y) &= \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j 2\pi (ux/M+vy/N)} \end{aligned} F(u,v)f(x,y)=x=0∑M−1y=0∑N−1f(x,y)e−j2π(ux/M+vy/N)=MN1u=0∑M−1v=0∑N−1F(u,v)ej2π(ux/M+vy/N)
二维离散傅里叶变换也可以用极坐标表示:
F ( u , v ) = R ( u , v ) + j I ( u , v ) = ∣ F ( u , v ) ∣ e j ϕ ( u , v ) F(u,v) = R(u,v) + j I(u,v) = |F(u,v)| e^{j \phi (u,v)} F(u,v)=R(u,v)+jI(u,v)=∣F(u,v)∣ejϕ(u,v)
傅里叶频谱(Fourier spectrum)为:
∣ F ( u , v ) ∣ = [ R 2 ( u , v ) + I 2 ( u , v ) ] 1 / 2 |F(u,v)| = [R^2(u,v) + I^2(u,v)]^{1/2} ∣F(u,v)∣=[R2(u,v)+I2(u,v)]1/2
傅里叶相位谱(Fourier phase spectrum)为:
ϕ ( u , v ) = a r c t a n [ I ( u , v ) / R ( u , v ) ] \phi (u,v) = arctan[I(u,v)/R(u,v)] ϕ(u,v)=arctan[I(u,v)/R(u,v)]
傅里叶功率谱(Fourier power spectrum)为:
P ( u , v ) = ∣ F ( u , v ) ∣ 2 = R 2 ( u , v ) + I 2 ( u , v ) P(u,v) = |F(u,v)|^2 = R^2(u,v) + I^2(u,v) P(u,v)=∣F(u,v)∣2=R2(u,v)+I2(u,v)
空间取样和频率间隔是相互对应的,频率域所对应的离散变量间的间隔为: Δ u = 1 / M Δ T , Δ v = 1 / N Δ Z \Delta u = 1/M \Delta T,\Delta v = 1/N \Delta Z Δu=1/MΔT,Δv=1/NΔZ。即:频域中样本之间的间隔,与空间样本之间的间隔及样本数量的乘积成反比。
空间域滤波器和频率域滤波器也是相互对应的,二维卷积定理是在空间域和频率域滤波之间建立等价关系的纽带:
( f ⋆ h ) ( x , y ) ⇔ ( F ⋅ H ) ( u , v ) (f \star h)(x,y) \Leftrightarrow (F \cdot H)(u,v) (f⋆h)(x,y)⇔(F⋅H)(u,v)
这表明 F 和 H 分别是 f 和 h 的傅里叶变换;f 和 h 的空间卷积的傅里叶变换,是它们的变换的乘积。
使用 OpenCV 中的 cv.dft() 函数也可以实现图像的傅里叶变换,cv.idft() 函数实现图像傅里叶逆变换。
函数说明:
cv.dft(src[, dst[, flags[, nonzeroRows]]]) → dst
cv.idft(src[, dst[, flags[, nonzeroRows]]]) → dst
参数说明:
注意事项:
转换标识符为 cv.DFT_COMPLEX_OUTPUT 时,cv.dft() 函数的输出是 2个通道的二维数组,使用 cv.magnitude() 函数可以实现计算二维矢量的幅值 。
函数说明:
cv.magnitude(x, y[, magnitude]) → dst
参数说明:
d s t ( I ) = x ( I ) 2 + y ( I ) 2 dst(I) = \sqrt{x(I)^2 + y(I)^2} dst(I)=x(I)2+y(I)2
傅里叶变换及相关操作的取值范围可能不适于图像显示,需要进行归一化处理。 OpenCV 中的 cv.normalize() 函数可以实现图像的归一化。
函数说明:
cv.normalize(src, dst[, alpha[, beta[, norm_type[, dtype[, mask]]]]]) → dst
参数说明:
傅里叶变换在理论上需要 O ( M N ) 2 O(MN)^2 O(MN)2 次运算,非常耗时;快速傅里叶变换只需要 O ( M N l o g ( M N ) ) O(MN log (MN)) O(MNlog(MN)) 次运算就可以完成。
OpenCV 中的傅里叶变换函数 cv.dft() 对于行数和列数都可以分解为 2 p ∗ 3 q ∗ 5 r 2^p * 3^q * 5^r 2p∗3q∗5r 的矩阵的计算性能最好。为了提高运算性能,可以对原矩阵的右侧和下方补 0,以满足该分解条件。OpenCV 中的 cv.getOptimalDFTSize() 函数可以实现图像的最优 DFT 尺寸扩充,适用于 cv.dft() 和 np.fft.fft2()。
函数说明:
cv.getOptimalDFTSize(versize) → retval
参数说明:
# 8.11:OpenCV 实现二维图像的离散傅里叶变换
imgGray = cv2.imread("../images/Fig0424a.tif", flags=0) # flags=0 读取为灰度图像
# cv2.dft 实现图像的傅里叶变换
imgFloat32 = np.float32(imgGray) # 将图像转换成 float32
dft = cv2.dft(imgFloat32, flags=cv2.DFT_COMPLEX_OUTPUT) # 傅里叶变换
dftShift = np.fft.fftshift(dft) # 将低频分量移动到频域图像的中心
# 幅度谱
# ampSpe = np.sqrt(np.power(dft[:,:,0], 2) + np.power(dftShift[:,:,1], 2))
dftAmp = cv2.magnitude(dft[:,:,0], dft[:,:,1]) # 幅度谱,未中心化
dftShiftAmp = cv2.magnitude(dftShift[:,:,0], dftShift[:,:,1]) # 幅度谱,中心化
dftAmpLog = np.log(1 + dftShiftAmp) # 幅度谱对数变换,以便于显示
# 相位谱
phase = np.arctan2(dftShift[:,:,1], dftShift[:,:,0]) # 计算相位角(弧度制)
dftPhi = phase / np.pi*180 # 将相位角转换为 [-180, 180]
print("dftMag max={}, min={}".format(dftAmp.max(), dftAmp.min()))
print("dftPhi max={}, min={}".format(dftPhi.max(), dftPhi.min()))
print("dftAmpLog max={}, min={}".format(dftAmpLog.max(), dftAmpLog.min()))
# cv2.idft 实现图像的逆傅里叶变换
invShift = np.fft.ifftshift(dftShift) # 将低频逆转换回图像四角
imgIdft = cv2.idft(invShift) # 逆傅里叶变换
imgRebuild = cv2.magnitude(imgIdft[:,:,0], imgIdft[:,:,1]) # 重建图像
plt.figure(figsize=(9, 6))
plt.subplot(231), plt.title("Original image"), plt.axis('off')
plt.imshow(imgGray, cmap='gray')
plt.subplot(232), plt.title("DFT Phase"), plt.axis('off')
plt.imshow(dftPhi, cmap='gray')
plt.subplot(233), plt.title("Rebuild image with IDFT"), plt.axis('off')
plt.imshow(imgRebuild, cmap='gray')
plt.subplot(234), plt.title("DFT amplitude spectrum"), plt.axis('off')
plt.imshow(dftAmp, cmap='gray')
plt.subplot(235), plt.title("DFT-shift amplitude"), plt.axis('off')
plt.imshow(dftShiftAmp, cmap='gray')
plt.subplot(236), plt.title("Log-trans of DFT amp"), plt.axis('off')
plt.imshow(dftAmpLog, cmap='gray')
plt.tight_layout()
plt.show()
(本节完)
版权声明:
youcans@xupt 原创作品,转载必须标注原文链接
Copyright 2021 youcans, XUPT
Crated:2022-1-20
欢迎关注 『OpenCV 完整例程 100 篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中【OpenCV 完整例程】01. 图像的读取(cv2.imread)
【OpenCV 完整例程】02. 图像的保存(cv2.imwrite)
【OpenCV 完整例程】03. 图像的显示(cv2.imshow)
【OpenCV 完整例程】04. 用 matplotlib 显示图像(plt.imshow)
【OpenCV 完整例程】05. 图像的属性(np.shape)
【OpenCV 完整例程】06. 像素的编辑(img.itemset)
【OpenCV 完整例程】07. 图像的创建(np.zeros)
【OpenCV 完整例程】08. 图像的复制(np.copy)
【OpenCV 完整例程】09. 图像的裁剪(cv2.selectROI)
【OpenCV 完整例程】10. 图像的拼接(np.hstack)
【OpenCV 完整例程】11. 图像通道的拆分(cv2.split)
【OpenCV 完整例程】12. 图像通道的合并(cv2.merge)
【OpenCV 完整例程】13. 图像的加法运算(cv2.add)
【OpenCV 完整例程】14. 图像与标量相加(cv2.add)
【OpenCV 完整例程】15. 图像的加权加法(cv2.addWeight)
【OpenCV 完整例程】16. 不同尺寸的图像加法
【OpenCV 完整例程】17. 两张图像的渐变切换
【OpenCV 完整例程】18. 图像的掩模加法
【OpenCV 完整例程】19. 图像的圆形遮罩
【OpenCV 完整例程】20. 图像的按位运算
【OpenCV 完整例程】21. 图像的叠加
【OpenCV 完整例程】22. 图像添加非中文文字
【OpenCV 完整例程】23. 图像添加中文文字
【OpenCV 完整例程】23. 图像添加中文文字
【OpenCV 完整例程】24. 图像的仿射变换
【OpenCV 完整例程】25. 图像的平移
【OpenCV 完整例程】26. 图像的旋转(以原点为中心)
【OpenCV 完整例程】27. 图像的旋转(以任意点为中心)
【OpenCV 完整例程】28. 图像的旋转(直角旋转)
【OpenCV 完整例程】29. 图像的翻转(cv2.flip)
【OpenCV 完整例程】30. 图像的缩放(cv2.resize)
【OpenCV 完整例程】31. 图像金字塔(cv2.pyrDown)
【OpenCV 完整例程】32. 图像的扭变(错切)
【OpenCV 完整例程】33. 图像的复合变换
【OpenCV 完整例程】34. 图像的投影变换
【OpenCV 完整例程】35. 图像的投影变换(边界填充)
【OpenCV 完整例程】36. 直角坐标与极坐标的转换
【OpenCV 完整例程】37. 图像的灰度化处理和二值化处理
【OpenCV 完整例程】38. 图像的反色变换(图像反转)
【OpenCV 完整例程】39. 图像灰度的线性变换
【OpenCV 完整例程】40. 图像分段线性灰度变换
【OpenCV 完整例程】41. 图像的灰度变换(灰度级分层)
【OpenCV 完整例程】42. 图像的灰度变换(比特平面分层)
【OpenCV 完整例程】43. 图像的灰度变换(对数变换)
【OpenCV 完整例程】44. 图像的灰度变换(伽马变换)
【OpenCV 完整例程】45. 图像的灰度直方图
【OpenCV 完整例程】46. 直方图均衡化
【OpenCV 完整例程】47. 图像增强—直方图匹配
【OpenCV 完整例程】48. 图像增强—彩色直方图匹配
【OpenCV 完整例程】49. 图像增强—局部直方图处理
【OpenCV 完整例程】50. 图像增强—直方图统计量图像增强
【OpenCV 完整例程】51. 图像增强—直方图反向追踪
【OpenCV 完整例程】52. 图像的相关与卷积运算
【OpenCV 完整例程】53. Scipy 实现图像二维卷积
【OpenCV 完整例程】54. OpenCV 实现图像二维卷积
【OpenCV 完整例程】55. 可分离卷积核
【OpenCV 完整例程】56. 低通盒式滤波器
【OpenCV 完整例程】57. 低通高斯滤波器
【OpenCV 完整例程】58. 非线性滤波—中值滤波
【OpenCV 完整例程】59. 非线性滤波—双边滤波
【OpenCV 完整例程】60. 非线性滤波—联合双边滤波
【OpenCV 完整例程】61. 导向滤波(Guided filter)
【OpenCV 完整例程】62. 图像锐化——钝化掩蔽
【OpenCV 完整例程】63. 图像锐化——Laplacian 算子
【OpenCV 完整例程】64. 图像锐化——Sobel 算子
【OpenCV 完整例程】65. 图像锐化——Scharr 算子
【OpenCV 完整例程】66. 图像滤波之低通/高通/带阻/带通
【OpenCV 完整例程】67. 空间域图像增强的综合应用
【OpenCV 完整例程】68. 空间域图像增强的综合应用
【OpenCV 完整例程】69. 连续非周期信号的傅立叶系数
【OpenCV 完整例程】70. 一维连续函数的傅里叶变换
【OpenCV 完整例程】71. 连续函数的取样
【OpenCV 完整例程】72. 一维离散傅里叶变换
【OpenCV 完整例程】73. 二维连续傅里叶变换
【OpenCV 完整例程】74. 图像的抗混叠
【OpenCV 完整例程】75. Numpy 实现图像傅里叶变换
【OpenCV 完整例程】76. OpenCV 实现图像傅里叶变换