STM32 是指 ST 公司开发的 32 位微控制器
STM32系列专为要求高性能、低成本、低功耗的嵌入式应用设计的ARM Cortex®-M0,M0+,M3, M4和M7内核(ST’s product portfolio contains a comprehensive range of microcontrollers, from robust, low-cost 8-bit MCUs up to 32-bit ARM-based Cortex®-M0 and M0+, Cortex®-M3, Cortex®-M4 Flash microcontrollers with a great choice of peripherals. ST has also extended this range to include an ultra-low-power MCU platform) [1] 。
按内核架构分为不同产品:
主流产品(STM32F0、STM32F1、STM32F3)、超低功耗产品(STM32L0、STM32L1、STM32L4、STM32L4+)、高性能产品(STM32F2、STM32F4、STM32F7、STM32H7)
即0x40021018,则打开三个IO口的时钟需要将三个位都置1:
#define RCC_APB2ENR (*(unsigned int *)0x40021018)
// 打开时钟
RCC_APB2ENR |= (1<<3); // 打开 GPIOB 时钟
RCC_APB2ENR |= (1<<4); // 打开 GPIOC 时钟
RCC_APB2ENR |= (1<<2); // 打开 GPIOA 时钟
GPIO口有八种模式:
这里使用推挽输出
端口1-7为低,端口8-15为高。每个引脚由四个位控制。
以GPIOB和0号引脚(B0)为例,将其设置为推挽输出,并设置最大速度为10MHz,则将控制B0的四个位设置为0001:
#define GPIOB_CRL (*(unsigned int *)0x40010c00)
// 最后四位变为0001
GPIOB_CRL |= (1<<0); // 最后一位变1
GPIOB_CRL &= ~(0xE<<0); // 倒数2、3、4位变0
对于GPIOB的B0、GPIOC的C15、GPIOA的A0,设置如下:
#define GPIOB_CRL (*(unsigned int *)0x40010C00)
#define GPIOC_CRH (*(unsigned int *)0x40011004)
#define GPIOA_CRL (*(unsigned int *)0x40010800)
// 配置 GPIO 口为推免输出
// GPIOB----最后四位为0001
GPIOB_CRL |= (1<<0); // 最后一位变1
GPIOB_CRL &= ~(0xE<<0); // 倒数2、3、4位变0
// GPIOC----前四位为0001
GPIOC_CRH |= (1<<28); // 第四位变1
GPIOC_CRH &= ~(0xE0000000); // 前三位变0
// GPIOA----最后四位为0001
GPIOA_CRL |= (1<<0); // 最后一位变1
GPIOA_CRL &= ~(0xE<<0); // 倒数2、3、4位变0
输出高电平则为1,低电平则为0
以GPIOB和0号引脚(B0)为例,将其设置为低电平:
#define GPIOB_ODR (*(unsigned int *)0x40010C0C)
GPIOB_ODR &= ~(1<<0); // 最后一位变0
对于GPIOB的B0、GPIOC的C15、GPIOA的A0,设置如下:
#define GPIOB_ODR (*(unsigned int *)0x40010C0C)
#define GPIOC_ODR (*(unsigned int *)0x4001100C)
#define GPIOA_ODR (*(unsigned int *)0x4001080C)
GPIOB_ODR &= ~(1<<0); //最后一位变为0
GPIOC_ODR &= ~(1<<15); //倒数16位变为0
GPIOA_ODR &= ~(1<<0); //最后一位变为
将所需要的启动文件复制到项目目录下(f103c8t6启动文件为startup_stm32f10x_md.s:
在上一节分析的基础上,加上循环,那么需要延时函数:
void Delay_ms( volatile unsigned int t)
{
unsigned int i;
while(t--)
for (i=0;i<800;i++);
}
总代码:
#define GPIOB_BASE 0x40010C00
#define GPIOC_BASE 0x40011000
#define GPIOA_BASE 0x40010800
#define RCC_APB2ENR (*(unsigned int *)0x40021018)
#define GPIOB_CRL (*(unsigned int *)0x40010C00)
#define GPIOC_CRH (*(unsigned int *)0x40011004)
#define GPIOA_CRL (*(unsigned int *)0x40010800)
#define GPIOB_ODR (*(unsigned int *)0x40010C0C)
#define GPIOC_ODR (*(unsigned int *)0x4001100C)
#define GPIOA_ODR (*(unsigned int *)0x4001080C)
void SystemInit(void);
void Delay_ms(volatile unsigned int);
void Delay_ms( volatile unsigned int t)
{
unsigned int i;
while(t--)
for (i=0;i<800;i++);
}
int main(){
// 开启时钟
RCC_APB2ENR |= (1<<3); // 开启 GPIOB 时钟
RCC_APB2ENR |= (1<<4); // 开启 GPIOC 时钟
RCC_APB2ENR |= (1<<2); // 开启 GPIOA 时钟
// 设置 GPIO 为推挽输出
// 设置 GPIOB 最后四位为 0001 (B0)
GPIOB_CRL |= (1<<0); // 最后一位设置为1
GPIOB_CRL &= ~(0xE); // 倒数二、三、四位设置为0
// 设置 GPIOC 前四位为 0001 (C15)
GPIOC_CRH |= (1<<28); // 第四位设置为1
GPIOC_CRH &= ~(0xE0000000); // 前三位设置为0
// 设置 GPIOA 最后四位为 0001 (A0)
GPIOA_CRL |= (1<<0); // 最后一位设置为1
GPIOA_CRL &= ~(0xE); // 倒数二、三、四位设置为0
// 3个LED初始化为不亮(即高点位)
GPIOB_ODR |= (1<<0); // 最后一位设置为1
GPIOC_ODR |= (1<<15); // 倒数第15位设置为1
GPIOA_ODR |= (1<<0); // 最后一位设置为1
while(1){
GPIOB_ODR &= ~(1<<0); // 点灯1
Delay_ms(1000000);
GPIOB_ODR |= (1<<0); // 灭灯1
Delay_ms(1000000);
GPIOC_ODR &= ~(1<<15); // 点灯2
Delay_ms(1000000);
GPIOC_ODR |= (1<<15); // 灭灯2
Delay_ms(1000000);
GPIOA_ODR &= ~(1<<0); // 点灯3
Delay_ms(1000000);
GPIOA_ODR |= (1<<0); // 灭灯3
Delay_ms(1000000);
}
}
void SystemInit(){
}
GND — GND
3v3 — 3v3
TXD — A10
RXD — A9
RCC_APB2ENR EQU 0x40021018;配置RCC寄存器,时钟,0x40021018为时钟地址
GPIOB_BASE EQU 0x40010C00
GPIOC_BASE EQU 0x40011000
GPIOA_BASE EQU 0x40010800
GPIOB_CRL EQU 0x40010C00
GPIOC_CRH EQU 0x40011004
GPIOA_CRL EQU 0x40010800
GPIOB_ODR EQU 0x40010C0C
GPIOC_ODR EQU 0x4001100C
GPIOA_ODR EQU 0x4001080C
Stack_Size EQU 0x00000400;栈的大小
AREA STACK, NOINIT, READWRITE, ALIGN=3 ;NOINIT: = NO Init,不初始化。READWRITE : 可读,可写。ALIGN =3 : 2^3 对齐,即8字节对齐。
Stack_Mem SPACE Stack_Size
__initial_sp
AREA RESET, DATA, READONLY
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
AREA |.text|, CODE, READONLY
THUMB
REQUIRE8
PRESERVE8
ENTRY
Reset_Handler
bl LED_Init;bl:带链接的跳转指令。当使用该指令跳转时,当前地址(PC)会自动送入LR寄存器
MainLoop BL LED_ON_C
BL Delay
BL LED_OFF_C
BL Delay
BL LED_ON_A
BL Delay
BL LED_OFF_A
BL Delay
BL LED_ON_B
BL Delay
BL LED_OFF_B
BL Delay
B MainLoop;B:无条件跳转。
LED_Init;LED初始化
PUSH {R0,R1, LR};R0,R1,LR中的值放入堆栈
;控制时钟
LDR R0,=RCC_APB2ENR;LDR是把地址装载到寄存器中(比如R0)。
ORR R0,R0,#0x1c
LDR R1,=RCC_APB2ENR
STR R0,[R1]
;初始化GPIOA_CRL
LDR R0,=GPIOA_CRL
BIC R0,R0,#0x0fffffff;BIC 先把立即数取反,再按位与
LDR R1,=GPIOA_CRL
STR R0,[R1]
LDR R0,=GPIOA_CRL
ORR R0,#0x00000001
LDR R1,=GPIOA_CRL
STR R0,[R1]
;将PA0置1
MOV R0,#0x01
LDR R1,=GPIOA_ORD
STR R0,[R1]
;初始化GPIOB_CRL
LDR R0,=GPIOB_CRL
BIC R0,R0,#0x0fffffff;BIC 先把立即数取反,再按位与
LDR R1,=GPIOB_CRL
STR R0,[R1]
LDR R0,=GPIOB_CRL
ORR R0,#0x00000001
LDR R1,=GPIOB_CRL
STR R0,[R1]
;将PB0置1
MOV R0,#0x01
LDR R1,=GPIOA_ORD
STR R0,[R1]
;初始化GPIOC
LDR R0,=GPIOC_CRH
BIC R0,R0,#0x0fffffff
LDR R1,=GPIOC_CRH
STR R0,[R1]
LDR R0,=GPIOC_CRH
ORR R0,#0x01000000
LDR R1,=GPIOC_CRH
STR R0,[R1]
;将PC15置1
MOV R0,#0x8000
LDR R1,=GPIOC_ORD
STR R0,[R1]
POP {R0,R1,PC};将栈中之前存的R0,R1,LR的值返还给R0,R1,PC
LED_ON_A
PUSH {R0,R1, LR}
MOV R0,#0x00
LDR R1,=GPIOA_ORD
STR R0,[R1]
POP {R0,R1,PC}
LED_OFF_A
PUSH {R0,R1, LR}
MOV R0,#0x01
LDR R1,=GPIOA_ORD
STR R0,[R1]
POP {R0,R1,PC}
LED_ON_B;亮灯
PUSH {R0,R1, LR}
MOV R0,#0x00
LDR R1,=GPIOB_ORD
STR R0,[R1]
POP {R0,R1,PC}
LED_OFF_B;熄灯
PUSH {R0,R1, LR}
MOV R0,#0x01
LDR R1,=GPIOB_ORD
STR R0,[R1]
POP {R0,R1,PC}
LED_ON_C;亮灯
PUSH {R0,R1, LR}
MOV R0,#0x00
LDR R1,=GPIOC_ORD
STR R0,[R1]
POP {R0,R1,PC}
LED_OFF_C;熄灯
PUSH {R0,R1, LR}
MOV R0,#0x0100
LDR R1,=GPIOC_ORD
STR R0,[R1]
POP {R0,R1,PC}
Delay
PUSH {R0,R1, LR}
MOVS R0,#0
MOVS R1,#0
MOVS R2,#0
DelayLoop0
ADDS R0,R0,#1
CMP R0,#330
BCC DelayLoop0
MOVS R0,#0
ADDS R1,R1,#1
CMP R1,#330
BCC DelayLoop0
MOVS R0,#0
MOVS R1,#0
ADDS R2,R2,#1
CMP R2,#15
BCC DelayLoop0
POP {R0,R1,PC}
NOP
END
这次的stm32的实践练习,还是遇到各种各样的问题,通过查阅资料,询问同学都基本上解决,最后也成功点亮LED灯!
STM32 F103之点亮LED流水灯 (STM32入门学习)