写于 2019-01-08 的旧文, 当时是针对一个比赛的探索. 觉得可能对其他人有用, 就放出来分享一下
生产与学术, 真实的对立…
这是我这两天对pytorch深度学习->android实际使用
的这个流程的一个切身感受.
说句实在的, 对于模型转换的探索, 算是我这两天最大的收获了…
全部浓缩在了这里: https://github.com/lartpang/DHSNet-PyTorch/blob/master/converter.ipynb
鉴于github加载ipynb太慢, 这里可以使用这个链接: https://nbviewer.jupyter.org/github/lartpang/DHSNet-PyTorch/blob/master/converter.ipynb
最近在研究将pytorch的模型转换为独立的app, 网上寻找, 找到了一个流程: pytorch->onnx->caffe2->android apk. 主要是基于这篇文章的启发: caffe2&pytorch之在移动端部署深度学习模型(全过程!).
这两天就在折腾这个工具链,为了导出onnx的模型, 不确定要基于怎样的网络, 是已经训练好的, 还是原始搭建网络后再训练来作为基础. 所以不断地翻阅pytorch和onnx的官方示例, 想要研究出来点什么, 可是, 都是自己手动搭建的模型. 而且使用的是预训练权重, 不是这样:
def squeezenet1_1(pretrained=False, **kwargs):
r"""SqueezeNet 1.1 model from the `official SqueezeNet repo
`_.
SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
than SqueezeNet 1.0, without sacrificing accuracy.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = SqueezeNet(version=1.1, **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['squeezenet1_1']))
return model
# Get pretrained squeezenet model
torch_model = squeezenet1_1(True)
from torch.autograd import Variable
batch_size = 1 # just a random number
# Input to the model
x = Variable(torch.randn(batch_size, 3, 224, 224), requires_grad=True)
# Export the model
torch_out = torch.onnx._export(
torch_model, # model being run
x, # model input (or a tuple for multiple inputs)
"squeezenet.onnx", # where to save the model (can be a file or file-like object)
export_params=True) # store the trained parameter weights inside the model file
就是这样:
# Create the super-resolution model by using the above model definition.
torch_model = SuperResolutionNet(upscale_factor=3)
# Load pretrained model weights
model_url = 'https://s3.amazonaws.com/pytorch/test_data/export/superres_epoch100-44c6958e.pth'
batch_size = 1 # just a random number
# Initialize model with the pretrained weights
torch_model.load_state_dict(model_zoo.load_url(model_url))
# set the train mode to false since we will only run the forward pass.
torch_model.train(False)
两种都在载入预训练权重, 直接加载到搭建好的网络上. 对于我手头有的已经训练好的模型, 似乎并不符合这样的条件.
最后采用尽可能模仿上面的例子代码的策略, 将整个网络完整的导出(torch.save(model)
), 然后再仿照上面那样, 将完整的网络加载(torch.load()
)到转换的代码中, 照猫画虎, 以进一步处理.
这里也很大程度上受到这里的启发: https://github.com/akirasosa/mobile-semantic-segmentation
本来想尝试使用之前找到的不论效果还是性能都很强的R3Net进行转换, 可是, 出于作者搭建网络使用的特殊手段, 加上pickle和onnx的限制, 这个尝试没有奏效, 只好转回头使用之前学习的DHS-Net的代码, 因为它的实现是基于VGG的, 里面的搭建的网络也是需要修改来符合onnx的要求, 主要是更改上采样操作为转置卷积(也就是分数步长卷积, 这里顺带温习了下pytorch里的nn.ConvTranspose2d()
的计算方式), 因为pytorch的上采样在onnx转换过程中有很多的问题, 特别麻烦, 外加上修改最大池化的一个参数(nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=False)
的参数ceil_mode
改为ceil_mode=False
, 这里参考自前面的知乎专栏的那篇文章), 这样终于可以转换了, 为了方便和快速的测试, 我只是训练了一个epoch, 就直接导出模型, 这次终于可以顺利的torch.save()
了.
filename_opti = ('%s/model-best.pth' % check_root_model)
torch.save(model, filename_opti)
之后便利用类似的代码进行了书写.
IMG_SIZE = 224
TMP_ONNX = 'cache/onnx/DHSNet.onnx'
MODEL_PATH = 'cache/opti/total-opti-current.pth'
# Convert to ONNX once
model = torch.load(MODEL_PATH).cuda()
model.train(False)
x = Variable(torch.randn(1, 3, 224, 224), requires_grad=True).cuda()
torch_out = torch.onnx._export(model, x, TMP_ONNX, export_params=True)
载入模型后, 便可以开始转换了, 这里需要安装caffe2, 官方推荐直接conda安装pytorch1每夜版即可, 会自动安装好依赖.
说起来这个conda, 就让我又爱又恨, 用它装pytorch从这里可以看出来, 确实不错, 对系统自身的环境没有太多的破坏, 可是用它装tensorflow-gpu的时候, 却是要自动把conda源里的cuda, cudnn工具包都给带上, 有时候似乎会破坏掉系统自身装载的cuda环境(? 不太肯定, 反正现在我不这样装, 直接上pip装, 干净又快速).
之后的代码中, 主要的问题也就是tensor的cpu/cuda, 或者numpy的转换的问题了. 多尝试一下, 输出下类型就可以看到了.
# Let's also save the init_net and predict_net to a file that we will later use for running them on mobile
with open('./cache/model_mobile/init_net.pb', "wb") as fopen:
fopen.write(init_net.SerializeToString())
with open('./cache/model_mobile/predict_net.pb', "wb") as fopen:
fopen.write(predict_net.SerializeToString())
这里记录下, 查看pytorch的tensor的形状使用tensor.size()
方法, 查看numpy数组的形状则使用numpy数组的adarray.shape
方法, 而对于PIL(from PIL import Image
)读取的Image对象而言, 使用Image.size
查看, 而且, 这里只会显示宽和高的长度, 而且Image的对象, 是三维, 在于pytorch的tensor转换的时候, 或者输入网络的时候, 要注意添加维度, 而且要调整通道位置(img = img.transpose(2, 0, 1)
).
由于网络保存的部分中, 只涉及到了网络的结构内的部分, 对于数据的预处理的部分并不涉及, 所以说要想真正的利用网络, 还得调整真实的输入, 来作为更适合网络的数据输入.
要注意, 这里针对导出的模型的相关测试, 程实际上是按照测试网络的流程来的.
# load the resized image and convert it to Ybr format
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
img = Image.open("./data/ILSVRC2012_test_00000004_224x224.jpg")
img = np.array(img)
img = img.astype(np.float64) / 255
img -= mean
img /= std
img = img.transpose(2, 0, 1)
首先安卓环境的配置就折腾了好久, 一堆破事, 真实的生产开发, 真心不易啊…
这里最终还是失败了, 因为对于安卓的代码是在是不熟悉, 最起码的基础认知都不足, 只有这先前学习Java的一点皮毛知识, 根本不足以二次开发. 也就跑了跑几个完整的demo而已.
这个跑通了, 但是这是个分类网络的例子, 对于我们要做的分割的任务而言, 有很多细节不一样.
这个例子我们参考了一下, 只是因为它的任务是对摄像头视频流数据风格迁移, 而且会直接回显到手机屏幕上, 这里我们主要是想初步实现对于我们网络模型安卓迁移的测试, 在第一个例子的基础上能否实现初步的摄像头视频流的分割, 然后下一步再进一步满足比赛要求.
可是, 尝试失败了. 虽然AS打包成了APK, 手机也安装上了, 可是莫名的, 在"loading…"中便闪退了…
这个例子很给力, 但是使用的是tensorflowlite, 虽然可以用, 能够实现下面的效果, 可是, 不会改.
而且是量化网络, 准确率还是有待提升.
最后还是要思考一下的, 做个总结.
吃就吃在没经验的亏上了, 都是初次接触, 之前没怎么接触过安卓, 主要是安卓的开发对于电脑的配置要求太高了, 自己的笔记本根本不够玩的. 也就没有接触过了.
外加上之前的研究学习, 主要是在学术的环境下搞得, 和实际的生产还有很大的距离, 科研与生产的分离, 这对于深度学习这一实际上更偏重实践的领域来说, 有些时候是尤为致命的. 关键时刻下不去手, 这多么无奈, 科学技术无法转化为实实在在的生产力, 忽然有些如梦一般的缥缈.
当然, 最关键的还是, 没有仔细分析赛方的需求, 没有完全思考清楚, 直接就开干了, 这个鲁莽的毛病, 还是没有改掉, 浪费时间不说, 也无助于实际的进度. 赛方的说明含糊, 应该问清楚.
若是担心时间, 那更应该看清楚要求, 切莫随意下手. 比赛说明里只是说要提交一个打包好的应用, 把环境, 依赖什么都处理好, 但是不一定是安卓apk呀, 可以有很多的形式, 但是这也只是最后的一点额外的辅助而已, 重点是模型的性能和效率呢.
莫忘初心, 方得始终. 为什么我想到的是这句.
基本上就定了还是使用R3Net, 只能是进一步的细节修改了, 换换后面的循环结构了, 改改连接什么的.
我准备再开始看论文, 学姐的论文可以看看, 似乎提出了一种很不错的后处理的方法, 效果提升很明显, 需要研究下.
pytorch的torch.save(model)
保存模型的时候, 模型架构的代码里不能使用一些特殊的构建形式, R3Net的ResNeXt结构就用了, 主要是一些lambda结构, 虽然不是太清楚, 但是一般的搭建手段都是可以的.
onnx对于pytorch的支持的操作, 在我的转化中, 主要是最大池化和上采样的问题, 前者可以修改ceil_mode
为False
, 后者则建议修改为转置卷积, 避免不必要的麻烦. 可见"导出整体模型"小节的描述.
这里主要是用release版本构建的apk.
未签名的apk在我的mi 8se (android 8.1)上不能安装, 会解析失败, 需要签名, AS的签名的生成也很简单, 和生成apk在同一级上, 有生成的选项.