pd.plotting.scatter_matrix(iris_data, figsize=(10, 10), alpha=1, hist_kwds={"bins": 20})
# No. 1
# 全部变量都放进去
sns.pairplot(iris_data)
# No.2
#kind:用于控制非对角线上图的类型,可选'scatter'与'reg'
#diag_kind:用于控制对角线上的图分类型,可选'hist'与'kde'
sns.pairplot(iris_data, kind='reg', diag_kind='kde')
sns.pairplot(iris_data, kind='reg', diag_kind='hist')
经过hue分类后的pairplot中发现,不论是从对角线上的分布图还是从分类后的散点图,都可以看出对于不同种类的花,其萼片长、花瓣长、花瓣宽的分布差异较大,换句话说,这些属性是可以帮助我们去识别不同种类的花的。比如,对于萼片、花瓣长度较短,花瓣宽度较窄的花,那么它大概率是山鸢尾
# No 3
# hue:针对某一字段进行分类
sns.pairplot(iris_data, hue='species', kind='reg', diag_kind='hist')
# No 4
# vars:研究某2个或者多个变量之间的关系vars,
# x_vars,y_vars:选择数据中的特定字段,以list形式传入需要注意的是,x_vars和y_vars要同时指定
sns.pairplot(iris_data, vars=["sepal length (cm)", "sepal width (cm)"])
sns.pairplot(iris_data, x_vars=["petal length (cm)", "sepal width (cm)"], y_vars=["petal width (cm)", "sepal length (cm)"])
三维散点图绘制采用mplot3d 模块进行绘制
# No. 5 3d
from mpl_toolkits.mplot3d import Axes3D
dims={'x':'petal length (cm)', 'y':'petal width (cm)', 'z':'sepal length (cm)'}
types=iris_data.species.value_counts().index.tolist()
print(dims, types)
flg=plt.figure()
ax=Axes3D(flg)
for iris_type in types:
tmp_data=iris_data[iris_data.species ==iris_type]
x,y,z = tmp_data[dims['x']], tmp_data[dims['z']],tmp_data[dims['z']]
ax.scatter(x, y, z, label=iris_type)
ax.legend(loc='upper left')
ax.set_zlabel(dims['z'])
ax.set_xlabel(dims['x'])
ax.set_ylabel(dims['y'])
plt.show()
完整代码:
import pandas as pd
from sklearn import datasets
import seaborn as sns
import matplotlib.pyplot as plt
def function():
iris = datasets.load_iris()
iris_data = pd.DataFrame(iris.data, columns=iris.feature_names)
iris_data['species'] = iris.target_names[iris.target]
# No. 0
pd.plotting.scatter_matrix(iris_data, figsize=(10, 10), alpha=1, hist_kwds={"bins": 20})
# No. 1
# 全部变量都放进去
sns.pairplot(iris_data)
# No.2
sns.pairplot(iris_data, kind='reg', diag_kind='kde')
sns.pairplot(iris_data, kind='reg', diag_kind='hist')
# No 3
# hue:针对某一字段进行分类
sns.pairplot(iris_data, hue='species', kind='reg', diag_kind='hist')
# No 4
# vars:研究某2个或者多个变量之间的关系vars,
# x_vars,y_vars:选择数据中的特定字段,以list形式传入需要注意的是,x_vars和y_vars要同时指定
sns.pairplot(iris_data, vars=["sepal length (cm)", "sepal width (cm)"])
sns.pairplot(iris_data, x_vars=["petal length (cm)", "sepal width (cm)"], y_vars=["petal width (cm)", "sepal length (cm)"])
# No. 5 3d
from mpl_toolkits.mplot3d import Axes3D
dims={'x':'petal length (cm)', 'y':'petal width (cm)', 'z':'sepal length (cm)'}
types=iris_data.species.value_counts().index.tolist()
print(dims, types)
flg=plt.figure()
ax=Axes3D(flg)
for iris_type in types:
tmp_data=iris_data[iris_data.species ==iris_type]
x,y,z = tmp_data[dims['x']], tmp_data[dims['z']],tmp_data[dims['z']]
ax.scatter(x, y, z, label=iris_type)
ax.legend(loc='upper left')
ax.set_zlabel(dims['z'])
ax.set_xlabel(dims['x'])
ax.set_ylabel(dims['y'])
print( iris_data)
plt.show()
if __name__ == '__main__':
function()