前言:
主要记录了Art虚拟机如何分配一个对象,包括我们new A的时候A储存到哪里
本文主要基于安卓7.1源码进行分析。
前置概念:
引用类型:
强引用(StrongReference):
JVM 宁可抛出 OOM ,也不会让 GC 回收具有强引用的对象;
软引用(SoftReference):
只有在内存空间不足时,才会被回的对象;
弱引用(WeakReference):
在 GC 时,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存;
虚引用(PhantomReference):
任何时候都可以被GC回收,当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是否存在该对象的虚引用,来了解这个对象是否将要被回收。可以用来作为GC回收Object的标志。
Art堆划分:
Image Space
Image Space 连续地址空间,不进行垃圾回收,存放系统预加载类,而这些对象是存放system@[email protected]@classes.oat这个OAT文件中的,每次开机启动只需把系统类映射到Image Space。
开机只创建一次,全局唯一
Zygote Space
Zygote Space连续地址空间,匿名共享内存,进行垃圾回收,管理Zygote进程在启动过程中预加载和创建的各种对象、资源。
Allocation Space
Allocation Space与Zygote Space性质一致,在Zygote进程fork第一个子进程之前,就会把Zygote Space一分为二,原来的已经被使用的那部分堆还叫Zygote Space,而未使用的那部分堆就叫Allocation Space。以后的对象都在Allocation Space上分配。
Large Object Space
Large Object Space 离散地址空间,进行垃圾回收,用来分配一些大于12K的大对象。
我们大部分分配的对象基本都是在 Allocation Space 和 Large Object Space 范围进行管理。
注:Image Space和Zygote Space在Zygote进程和应用程序进程之间进行共享,而Allocation Space就每个进程都独立地拥有一份。
注意,虽然Image Space和Zygote Space都是在Zygote进程和应用程序进程之间进行共享,但是前者的对象只创建一次,而后者的对象需要在系统每次启动时根据运行情况都重新创建一遍。
当满足以下三个条件时,在large object heap上分配,否则在zygote或者allocation space上分配:
-
请求分配的内存大于等于Heap类的成员变量large_object_threshold_指定的值。这个值等于3 * kPageSize,即3个页面的大小。
大小不唯一,主要和手机的内存大小有关系。
已经从Zygote Space划分出Allocation Space,即Heap类的成员变量have_zygote_space_的值等于true。
被分配的对象是一个原子类型数组,即byte数组、int数组和boolean数组等。因为数组是连续的内存段。
内存分配方式:
我们知道,一般在java程序中,new的对象是分配在堆空间中的,但是实际的情况是,大部分的new对象会进入堆空间中,而并非是全部的对象,还有另外两个地方可以存储new的对象,我们称之为栈上分配以及TLAB
前言:
在我们的应用程序中,其实有很多的对象的作用域都不会逃逸出方法外,也就是说该对象的生命周期会随着方法的调用开始而开始,方法的调用结束而结束,对于这种对象,是不是该考虑将对象不在分配在堆空间中呢?
因为一旦分配在堆空间中,当方法调用结束,没有了引用指向该对象,该对象就需要被gc回收,而如果存在大量的这种情况,对gc来说无疑是一种负担。
栈内存分配方式的特点
因此,JVM和ART一样,提供了一种叫做栈上分配的概念,针对那些作用域不会逃逸出方法的对象,在分配内存时不在将对象分配在堆内存中,而是将对象属性打散后分配在栈(线程私有的,属于栈内存)上,这样,随着方法的调用结束,栈空间的回收就会随着将栈上分配的打散后的对象回收掉,不再给gc增加额外的无用负担,从而提升应用程序整体的性能
下来介绍 TLAB(Thread Local Allocation Buffer)
TLAB当时是我自己的了解去写的。当时也想了很久,不知道为什么还需要TLAB
我们知道,对象分配在堆上,而堆是一个全局共享的区域,当多个线程同一时刻操作堆内存分配对象空间时,就需要进行同步,而同步带来的效果就是对象分配效率变差(尽管JVM采用了CAS的形式处理分配失败的情况),但是对于存在竞争激烈的分配场合仍然会导致效率变差。
于是就出现了 TLAB的方式去分配内存
TLAB方式分配内存:
即线程本地分配缓存 , TLAB是Android为了减少多线程之间同步,加快处理速度,使用Thread的本地存储空间来进行存储。如果可以使用TLAB分配,最终会调用Thread对象的AllocTlab()方法进行内存分配。
需要TLAB的原因就是提高对象在堆上的分配效率而采用的一种手段,就是给每个线程分配一小块私有的堆空间,即TLAB是一块线程私有的堆空间(实际上是Eden区中划出的)。
栈上分配和TLAB对比
名称 | 针对点 | 处于对象分配流程的位置 |
---|---|---|
栈上分配 | 避免gc无谓负担 | 1 |
TLAB | 加速堆上对象的分配 | 2 |
Heap内存分配阶段:
我们直接找到Heap的分配内存的方法
- allocator表示分配器的类型,也就是描述要在哪个空间分配对象。AllocatorType是一个枚举类型,它的定义如下所示:
这个枚举类型定义在文件/art/runtime/gc/allocator_type.h。
AllocatorType一共有六个值,它们的含义如下所示:
kAllocatorTypeBumpPointer:表示在Bump Pointer Space中分配对象。
kAllocatorTypeTLAB:表示要在由Bump Pointer Space提供的线程局部分配缓冲区中分配对象。
kAllocatorTypeRosAlloc:表示要在Ros Alloc Space分配对象。
kAllocatorTypeDlMalloc:表示要在Dl Malloc Space分配对象。
kAllocatorTypeNonMoving:表示要在Non Moving Space分配对象。
kAllocatorTypeLOS:表示要在Large Object Space分配对象。
// Different types of allocators.
enum AllocatorType {
kAllocatorTypeBumpPointer, // Use BumpPointer allocator, has entrypoints.
kAllocatorTypeTLAB, // Use TLAB allocator, has entrypoints.
kAllocatorTypeRosAlloc, // Use RosAlloc allocator, has entrypoints.
kAllocatorTypeDlMalloc, // Use dlmalloc allocator, has entrypoints.
kAllocatorTypeNonMoving, // Special allocator for non moving objects, doesn't have entrypoints.
kAllocatorTypeLOS, // Large object space, also doesn't have entrypoints.
kAllocatorTypeRegion,
kAllocatorTypeRegionTLAB,
};
- pre_fence_visitor是一个回调函数,用来在分配对象完成后在当前执行路径中执行初始化操作,例如分配完成一个数组对象,通过该回调函数立即设置数组的大小,这样就可以保证数组对象的完整性和一致性,避免多线程环境下通过加锁来完成相同的操作。
核心方法如下:
//在Allocator内存区 分配内存
template
inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self,
mirror::Class* klass,
size_t byte_count,
AllocatorType allocator,
const PreFenceVisitor& pre_fence_visitor) {
if (kIsDebugBuild) {
CheckPreconditionsForAllocObject(klass, byte_count);
// Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
// done in the runnable state where suspension is expected.
CHECK_EQ(self->GetState(), kRunnable);
self->AssertThreadSuspensionIsAllowable();
}
// Need to check that we arent the large object allocator since the large object allocation code
// path this function. If we didn't check we would have an infinite loop.
mirror::Object* obj;
//判断是否需要在Large Object Space 内存区分配内存
//1) 请求分配的内存大于等于large_object_threshold_(这个值等于3 * kPageSize,即3个页面的大小)。
//2)被分配的对象是一个原子类型数组(即byte数组、int数组和boolean数组等)或者字符串。
//3)kCheckLargeObject为ture。
if (kCheckLargeObject && UNLIKELY(ShouldAllocLargeObject(klass, byte_count))) {
//如果返回的是true的话就则调用AllocLargeObject方法进行大内存对象分配
obj = AllocLargeObject(self, &klass, byte_count,
pre_fence_visitor);
if (obj != nullptr) {
return obj;
} else {
// There should be an OOM exception, since we are retrying, clear it.
self->ClearException();
}
// If the large object allocation failed, try to use the normal spaces (main space,
// non moving space). This can happen if there is significant virtual address space
// fragmentation.
}
// bytes allocated for the (individual) object.
// 分配给对象的内存大小
size_t bytes_allocated;
// 当前分区可用的内存大小
size_t usable_size;
size_t new_num_bytes_allocated = 0;
if (allocator == kAllocatorTypeTLAB || allocator == kAllocatorTypeRegionTLAB) {
byte_count = RoundUp(byte_count, space::BumpPointerSpace::kAlignment);
}
// If we have a thread local allocation we don't need to update bytes allocated.
if ((allocator == kAllocatorTypeTLAB || allocator == kAllocatorTypeRegionTLAB) &&
byte_count <= self->TlabSize()) {
//如果满足条件则在TLAB表分配对象
obj = self->AllocTlab(byte_count);
DCHECK(obj != nullptr) << "AllocTlab can't fail";
//设置分配对象的class类型,可以看出来一个类刚被创建第一件事就是
//设置class的类型
obj->SetClass(klass);
if (kUseBakerOrBrooksReadBarrier) {
if (kUseBrooksReadBarrier) {
obj->SetReadBarrierPointer(obj);
}
obj->AssertReadBarrierPointer();
}
bytes_allocated = byte_count;
usable_size = bytes_allocated;
pre_fence_visitor(obj, usable_size);
QuasiAtomic::ThreadFenceForConstructor();
} else if (!kInstrumented && allocator == kAllocatorTypeRosAlloc &&
(obj = rosalloc_space_->AllocThreadLocal(self, byte_count, &bytes_allocated)) &&
LIKELY(obj != nullptr)) {
DCHECK(!is_running_on_memory_tool_);
obj->SetClass(klass);
if (kUseBakerOrBrooksReadBarrier) {
if (kUseBrooksReadBarrier) {
obj->SetReadBarrierPointer(obj);
}
obj->AssertReadBarrierPointer();
}
usable_size = bytes_allocated;
pre_fence_visitor(obj, usable_size);
QuasiAtomic::ThreadFenceForConstructor();
} else {
// bytes allocated that takes bulk thread-local buffer allocations into account.
size_t bytes_tl_bulk_allocated = 0;
//TryToAllocate 也是核心方法之一,尝试在Allocation Space分区进行分配
obj = TryToAllocate(self, allocator, byte_count, &bytes_allocated,
&usable_size, &bytes_tl_bulk_allocated);
if (UNLIKELY(obj == nullptr)) {
// AllocateInternalWithGc can cause thread suspension, if someone instruments the entrypoints
// or changes the allocator in a suspend point here, we need to retry the allocation.
//这个地方是以上都失败了,会先尝试GC然后在进行内存分配
//核心方法
obj = AllocateInternalWithGc(self,
allocator,
kInstrumented,
byte_count,
&bytes_allocated,
&usable_size,
&bytes_tl_bulk_allocated, &klass);
if (obj == nullptr) {
// The only way that we can get a null return if there is no pending exception is if the
// allocator or instrumentation changed.
if (!self->IsExceptionPending()) {
// AllocObject will pick up the new allocator type, and instrumented as true is the safe
// default.
return AllocObject*kInstrumented*/true>(self,
klass,
byte_count,
pre_fence_visitor);
}
return nullptr;
}
}
DCHECK_GT(bytes_allocated, 0u);
DCHECK_GT(usable_size, 0u);
obj->SetClass(klass);
if (kUseBakerOrBrooksReadBarrier) {
if (kUseBrooksReadBarrier) {
obj->SetReadBarrierPointer(obj);
}
obj->AssertReadBarrierPointer();
}
if (collector::SemiSpace::kUseRememberedSet && UNLIKELY(allocator == kAllocatorTypeNonMoving)) {
// (Note this if statement will be constant folded away for the
// fast-path quick entry points.) Because SetClass() has no write
// barrier, if a non-moving space allocation, we need a write
// barrier as the class pointer may point to the bump pointer
// space (where the class pointer is an "old-to-young" reference,
// though rare) under the GSS collector with the remembered set
// enabled. We don't need this for kAllocatorTypeRosAlloc/DlMalloc
// cases because we don't directly allocate into the main alloc
// space (besides promotions) under the SS/GSS collector.
WriteBarrierField(obj, mirror::Object::ClassOffset(), klass);
}
pre_fence_visitor(obj, usable_size);
QuasiAtomic::ThreadFenceForConstructor();
new_num_bytes_allocated = static_cast(
num_bytes_allocated_.FetchAndAddRelaxed(bytes_tl_bulk_allocated)) + bytes_tl_bulk_allocated;
}
if (kIsDebugBuild && Runtime::Current()->IsStarted()) {
CHECK_LE(obj->SizeOf(), usable_size);
}
// TODO: Deprecate.
if (kInstrumented) {
if (Runtime::Current()->HasStatsEnabled()) {
RuntimeStats* thread_stats = self->GetStats();
++thread_stats->allocated_objects;
thread_stats->allocated_bytes += bytes_allocated;
RuntimeStats* global_stats = Runtime::Current()->GetStats();
++global_stats->allocated_objects;
global_stats->allocated_bytes += bytes_allocated;
}
} else {
DCHECK(!Runtime::Current()->HasStatsEnabled());
}
if (kInstrumented) {
if (IsAllocTrackingEnabled()) {
// allocation_records_ is not null since it never becomes null after allocation tracking is
// enabled.
DCHECK(allocation_records_ != nullptr);
allocation_records_->RecordAllocation(self, &obj, bytes_allocated);
}
} else {
DCHECK(!IsAllocTrackingEnabled());
}
if (AllocatorHasAllocationStack(allocator)) {
PushOnAllocationStack(self, &obj);
}
if (kInstrumented) {
if (gc_stress_mode_) {
CheckGcStressMode(self, &obj);
}
} else {
DCHECK(!gc_stress_mode_);
}
// IsConcurrentGc() isn't known at compile time so we can optimize by not checking it for
// the BumpPointer or TLAB allocators. This is nice since it allows the entire if statement to be
// optimized out. And for the other allocators, AllocatorMayHaveConcurrentGC is a constant since
// the allocator_type should be constant propagated.
if (AllocatorMayHaveConcurrentGC(allocator) && IsGcConcurrent()) {
CheckConcurrentGC(self, new_num_bytes_allocated, &obj);
}
VerifyObject(obj);
self->VerifyStack();
return obj;
}
函数总结如下图:
TryToAllocate
template
inline mirror::Object* Heap::TryToAllocate(Thread* self,
AllocatorType allocator_type,
size_t alloc_size,
size_t* bytes_allocated,
size_t* usable_size,
size_t* bytes_tl_bulk_allocated) {
//如果不是指定在当前ART运行时线程的TLAB中分配,
if (allocator_type != kAllocatorTypeTLAB &&
allocator_type != kAllocatorTypeRegionTLAB &&
allocator_type != kAllocatorTypeRosAlloc &&
//如果指定分配的对象大小超出了当前堆的限制,那么就会分配失败,返回一个nullptr指针。
UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, alloc_size))) {
return nullptr;
}
//判断分配器的类型
mirror::Object* ret;
switch (allocator_type) {
//kAllocatorTypeBumpPointer类型,会在Bump Pointer Space中分配对象,
//调用Heap类的成员变量bump_pointer_space_指向的一个BumpPointerSpace
//对象的成员函数AllocNonvirtual分配指定大小的内存。
case kAllocatorTypeBumpPointer: {
DCHECK(bump_pointer_space_ != nullptr);
alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment);
ret = bump_pointer_space_->AllocNonvirtual(alloc_size);
if (LIKELY(ret != nullptr)) {
*bytes_allocated = alloc_size;
*usable_size = alloc_size;
*bytes_tl_bulk_allocated = alloc_size;
}
break;
}
//kAllocatorTypeRosAlloc类型,会在Ros Alloc Space中分配对象。
//这里会根据kInstrumented的值和is_running_on_memory_tool_参数来进行判断,
//分别会调用Heap类的成员变量rosalloc_space_指向的RosAllocSpace
//对象的成员函数Alloc者AllocNonvirtual分配指定大小的内存。
case kAllocatorTypeRosAlloc: {
if (kInstrumented && UNLIKELY(is_running_on_memory_tool_)) {
// If running on valgrind or asan, we should be using the instrumented path.
size_t max_bytes_tl_bulk_allocated = rosalloc_space_->MaxBytesBulkAllocatedFor(alloc_size);
if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type,
max_bytes_tl_bulk_allocated))) {
return nullptr;
}
ret = rosalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size,
bytes_tl_bulk_allocated);
} else {
DCHECK(!is_running_on_memory_tool_);
size_t max_bytes_tl_bulk_allocated =
rosalloc_space_->MaxBytesBulkAllocatedForNonvirtual(alloc_size);
if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type,
max_bytes_tl_bulk_allocated))) {
return nullptr;
}
if (!kInstrumented) {
DCHECK(!rosalloc_space_->CanAllocThreadLocal(self, alloc_size));
}
ret = rosalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size,
bytes_tl_bulk_allocated);
}
break;
}
//kAllocatorTypeDlMalloc类型,会在DlMalloc Space中分配对象,
//调用Heap类的成员变量dlmalloc_space_指向的一个DlMallocSpace对象的成员函数Alloc
//或AllocNonvirtual分配指定大小的内存(判断条件同kAllocatorTypeRosAlloc类型)。
case kAllocatorTypeDlMalloc: {
if (kInstrumented && UNLIKELY(is_running_on_memory_tool_)) {
// If running on valgrind, we should be using the instrumented path.
ret = dlmalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size,
bytes_tl_bulk_allocated);
} else {
DCHECK(!is_running_on_memory_tool_);
ret = dlmalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size,
bytes_tl_bulk_allocated);
}
break;
}
//kAllocatorTypeNonMoving类型,会在Non Moving Space中分配对象,
//调用Heap类的成员变量non_moving_space_指向的一个RosAllocSpace
//对象或者DlMallocSpace对象的成员函数Alloc分配指定大小的内存。
case kAllocatorTypeNonMoving: {
ret = non_moving_space_->Alloc(self, alloc_size, bytes_allocated, usable_size,
bytes_tl_bulk_allocated);
break;
}
//kAllocatorTypeLOS类型,会在Large Object Space中分配对象,
//调用Heap类的成员变量large_object_space_指向的一个LargeObjectSpace
//对象的成员函数Alloc分配指定大小的内存。
case kAllocatorTypeLOS: {
ret = large_object_space_->Alloc(self, alloc_size, bytes_allocated, usable_size,
bytes_tl_bulk_allocated);
// Note that the bump pointer spaces aren't necessarily next to
// the other continuous spaces like the non-moving alloc space or
// the zygote space.
DCHECK(ret == nullptr || large_object_space_->Contains(ret));
break;
}
//kAllocatorTypeRegion类型,会在Region Space中分配对象,
//调用Heap类的成员变量region_space_指向的一个RegionSpace对象的成员函数
//AllocNonvirtual来分配指定大小的内存。
case kAllocatorTypeTLAB: {
DCHECK_ALIGNED(alloc_size, space::BumpPointerSpace::kAlignment);
if (UNLIKELY(self->TlabSize() < alloc_size)) {
const size_t new_tlab_size = alloc_size + kDefaultTLABSize;
if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, new_tlab_size))) {
return nullptr;
}
// Try allocating a new thread local buffer, if the allocaiton fails the space must be
// full so return null.
if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) {
return nullptr;
}
*bytes_tl_bulk_allocated = new_tlab_size;
} else {
*bytes_tl_bulk_allocated = 0;
}
// The allocation can't fail.
ret = self->AllocTlab(alloc_size);
DCHECK(ret != nullptr);
*bytes_allocated = alloc_size;
*usable_size = alloc_size;
break;
}
//kAllocatorTypeTLAB或kAllocatorTypeRegionTLAB类型,
//在当前ART运行时线程的TLAB中分配对象。
//首先会判断当前TLAB剩余大小是否小于将要分配的大小,如果小于,
//就会调用Thread对象的AllocWithNewTLAB成员函数重新请求一块内存,
//然后进行对象分配。如果TLAB剩余大小足够大
//就会直接调用当前Thread对象的成员函数AllocTlab进行内存分配。
case kAllocatorTypeRegion: {
DCHECK(region_space_ != nullptr);
alloc_size = RoundUp(alloc_size, space::RegionSpace::kAlignment);
ret = region_space_->AllocNonvirtual(alloc_size, bytes_allocated, usable_size,
bytes_tl_bulk_allocated);
break;
}
case kAllocatorTypeRegionTLAB: {
DCHECK(region_space_ != nullptr);
DCHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
if (UNLIKELY(self->TlabSize() < alloc_size)) {
if (space::RegionSpace::kRegionSize >= alloc_size) {
// Non-large. Check OOME for a tlab.
if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, space::RegionSpace::kRegionSize))) {
// Try to allocate a tlab.
if (!region_space_->AllocNewTlab(self)) {
// Failed to allocate a tlab. Try non-tlab.
ret = region_space_->AllocNonvirtual(alloc_size, bytes_allocated, usable_size,
bytes_tl_bulk_allocated);
return ret;
}
*bytes_tl_bulk_allocated = space::RegionSpace::kRegionSize;
// Fall-through.
} else {
// Check OOME for a non-tlab allocation.
if (!IsOutOfMemoryOnAllocation(allocator_type, alloc_size)) {
ret = region_space_->AllocNonvirtual(alloc_size, bytes_allocated, usable_size,
bytes_tl_bulk_allocated);
return ret;
} else {
// Neither tlab or non-tlab works. Give up.
return nullptr;
}
}
} else {
// Large. Check OOME.
if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, alloc_size))) {
ret = region_space_->AllocNonvirtual(alloc_size, bytes_allocated, usable_size,
bytes_tl_bulk_allocated);
return ret;
} else {
return nullptr;
}
}
} else {
*bytes_tl_bulk_allocated = 0; // Allocated in an existing buffer.
}
// The allocation can't fail.
ret = self->AllocTlab(alloc_size);
DCHECK(ret != nullptr);
*bytes_allocated = alloc_size;
*usable_size = alloc_size;
break;
}
default: {
LOG(FATAL) << "Invalid allocator type";
ret = nullptr;
}
}
return ret;
}
AllocateInternalWithGc
mirror::Object* Heap::AllocateInternalWithGc(Thread* self,
AllocatorType allocator,
bool instrumented,
size_t alloc_size,
size_t* bytes_allocated,
size_t* usable_size,
size_t* bytes_tl_bulk_allocated,
mirror::Class** klass) {
bool was_default_allocator = allocator == GetCurrentAllocator();
// Make sure there is no pending exception since we may need to throw an OOME.
self->AssertNoPendingException();
DCHECK(klass != nullptr);
StackHandleScope<1> hs(self);
HandleWrapper h(hs.NewHandleWrapper(klass));
klass = nullptr; // Invalidate for safety.
// The allocation failed. If the GC is running, block until it completes, and then retry the
// allocation.
collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
// If we were the default allocator but the allocator changed while we were suspended,
// abort the allocation.
if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
(!instrumented && EntrypointsInstrumented())) {
return nullptr;
}
if (last_gc != collector::kGcTypeNone) {
// A GC was in progress and we blocked, retry allocation now that memory has been freed.
mirror::Object* ptr = TryToAllocate(self, allocator, alloc_size, bytes_allocated,
usable_size, bytes_tl_bulk_allocated);
if (ptr != nullptr) {
return ptr;
}
}
collector::GcType tried_type = next_gc_type_;
const bool gc_ran =
CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
(!instrumented && EntrypointsInstrumented())) {
return nullptr;
}
if (gc_ran) {
mirror::Object* ptr = TryToAllocate(self, allocator, alloc_size, bytes_allocated,
usable_size, bytes_tl_bulk_allocated);
if (ptr != nullptr) {
return ptr;
}
}
// Loop through our different Gc types and try to Gc until we get enough free memory.
for (collector::GcType gc_type : gc_plan_) {
if (gc_type == tried_type) {
continue;
}
// Attempt to run the collector, if we succeed, re-try the allocation.
const bool plan_gc_ran =
CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
(!instrumented && EntrypointsInstrumented())) {
return nullptr;
}
if (plan_gc_ran) {
// Did we free sufficient memory for the allocation to succeed?
mirror::Object* ptr = TryToAllocate(self, allocator, alloc_size, bytes_allocated,
usable_size, bytes_tl_bulk_allocated);
if (ptr != nullptr) {
return ptr;
}
}
}
// Allocations have failed after GCs; this is an exceptional state.
// Try harder, growing the heap if necessary.
mirror::Object* ptr = TryToAllocate(self, allocator, alloc_size, bytes_allocated,
usable_size, bytes_tl_bulk_allocated);
if (ptr != nullptr) {
return ptr;
}
// Most allocations should have succeeded by now, so the heap is really full, really fragmented,
// or the requested size is really big. Do another GC, collecting SoftReferences this time. The
// VM spec requires that all SoftReferences have been collected and cleared before throwing
// OOME.
VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
<< " allocation";
// TODO: Run finalization, but this may cause more allocations to occur.
// We don't need a WaitForGcToComplete here either.
DCHECK(!gc_plan_.empty());
CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
(!instrumented && EntrypointsInstrumented())) {
return nullptr;
}
ptr = TryToAllocate(self, allocator, alloc_size, bytes_allocated, usable_size,
bytes_tl_bulk_allocated);
if (ptr == nullptr) {
const uint64_t current_time = NanoTime();
switch (allocator) {
case kAllocatorTypeRosAlloc:
// Fall-through.
case kAllocatorTypeDlMalloc: {
if (use_homogeneous_space_compaction_for_oom_ &&
current_time - last_time_homogeneous_space_compaction_by_oom_ >
min_interval_homogeneous_space_compaction_by_oom_) {
last_time_homogeneous_space_compaction_by_oom_ = current_time;
HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
// Thread suspension could have occurred.
if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
(!instrumented && EntrypointsInstrumented())) {
return nullptr;
}
switch (result) {
case HomogeneousSpaceCompactResult::kSuccess:
// If the allocation succeeded, we delayed an oom.
ptr = TryToAllocate(self, allocator, alloc_size, bytes_allocated,
usable_size, bytes_tl_bulk_allocated);
if (ptr != nullptr) {
count_delayed_oom_++;
}
break;
case HomogeneousSpaceCompactResult::kErrorReject:
// Reject due to disabled moving GC.
break;
case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
// Throw OOM by default.
break;
default: {
UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
<< static_cast(result);
UNREACHABLE();
}
}
// Always print that we ran homogeneous space compation since this can cause jank.
VLOG(heap) << "Ran heap homogeneous space compaction, "
<< " requested defragmentation "
<< count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
<< " performed defragmentation "
<< count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
<< " ignored homogeneous space compaction "
<< count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
<< " delayed count = "
<< count_delayed_oom_.LoadSequentiallyConsistent();
}
break;
}
case kAllocatorTypeNonMoving: {
// Try to transition the heap if the allocation failure was due to the space being full.
if (!IsOutOfMemoryOnAllocation(allocator, alloc_size)) {
// If we aren't out of memory then the OOM was probably from the non moving space being
// full. Attempt to disable compaction and turn the main space into a non moving space.
DisableMovingGc();
// Thread suspension could have occurred.
if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
(!instrumented && EntrypointsInstrumented())) {
return nullptr;
}
// If we are still a moving GC then something must have caused the transition to fail.
if (IsMovingGc(collector_type_)) {
MutexLock mu(self, *gc_complete_lock_);
// If we couldn't disable moving GC, just throw OOME and return null.
LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
<< disable_moving_gc_count_;
} else {
LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
ptr = TryToAllocate(self, allocator, alloc_size, bytes_allocated,
usable_size, bytes_tl_bulk_allocated);
}
}
break;
}
default: {
// Do nothing for others allocators.
}
}
}
// If the allocation hasn't succeeded by this point, throw an OOM error.
if (ptr == nullptr) {
ThrowOutOfMemoryError(self, alloc_size, allocator);
}
return ptr;
}
1,首先判断当前的GC状态,如果正在进行GC,则等待直至GC结束。
2,判断当前内存分配器类型是否发生了变化,如果发生了变化,则分配失败。
3,如果last_gc != collector::kGcTypeNone,表明刚刚进行了GC操作,这时可以直接调用TryToAllocate成员方法尝试进行内存分配。
4,调用CollectGarbageInternal进行垃圾回收,不回收弱引用、软引用。
5,GC成功,再次调用TryToAllocate成员方法尝试进行内存分配。
6,根据GC类型由弱到强,进行多次内存分配,直至获得足够的内存进行内存分配。这个过程可能会多次调用TryToAllocate成员方法尝试进行内存分配。
注意:以上过程的内存分配,堆大小不会增大。
7,直接增大堆的大小进行内存分配。具体方法是,调用TryToAllocate成员方法,传递的模板参数kGrow为true。
8,如果还没有分配成功,会再一次进行GC,这次将会回收软引用。
9,直接增大堆的大小进行内存分配。具体方法是,调用TryToAllocate成员方法,传递的模板参数kGrow为true。
10,如果失败了,会跟进内存分配器的类型分别进行处理。
如果是kAllocatorTypeRosAlloc、kAllocatorTypeDlMalloc类型,会判断是否支持同构空间压缩,并且距离上一次同构空间压缩的时间大于允许的最小时间间隔,则会调用PerformHomogeneousSpaceCompact方法进行同构空间压缩。如果压缩成功,则调用TryToAllocate最后一次尝试进行内存分配。
如果是kAllocatorTypeNonMoving类型,首先设置最大堆空间,如果成功,接着尝试禁用移动空间的GC,并将主空间转换为非移动空间。成功后再次调用TryToAllocate最后一次尝试进行内存分配。
11,如果上述步骤都失败了,最后会发送OOM的Error。
参考:
https://blog.csdn.net/melody157398/article/details/106394066/
https://blog.csdn.net/u011578734/article/details/99692289
安卓逆向百级教程+全网最新js逆向视频+永久小蜜圈+永久售后群=1299
视频下载网盘
�http://nas.alienhe.cn:5008/home.html�
下载视频账号密码:
账号guest 密码world
Js试看:
http://oss.alienhe.cn/JS%E9%80%86%E5%90%91%E5%85%A5%E9%97%A8-%E5%B8%A6%E6%B0%B4%E5%8D%B0.mp4