【算法】Java 二叉树前序中序后序层次遍历

二叉树

这是一个例子:


image.png

二叉树树的遍历方式有两种,深度优先遍历(Depth First Search)和广度优先遍历(Bread First Search)。深度的话就是一条路能走就先走到头,然后再走另外一条路,关于左右走哪条路的顺序不同,分为先根,中根,后根三种;而广度顾名思义就是一层一层的往下遍历,在这一层彻底找完了再往下一层遍历。

中序遍历

思路

即遍历顺序为中根序,左根右,如上图例子的顺序即为:2,5,6,11,7,2,5,4,9

递归算法很容易想到,先递归调用左子树,再输出自身值,再递归调用右子树。

一切递归算法都能转化成非递归算法。中序遍历的非递归算法稍微复杂一点,但大概思路就是把递归的函数栈转化实际编程语言中的对象栈。

申请一个栈,从根节点出发把左子树全部入栈,然后在出栈一个节点的时候,把它的右子树的左节点也全部入栈,其实这个和递归的思路是一模一样的。

递归代码

class Solution {
    public List preorderTraversal(TreeNode root) {
        List res = new ArrayList<>();
        helper(root, res);
        return res;
    }

    private void helper(TreeNode root, List res) {
        if (root == null) return;
        helper(root.left, res);
         res.add(root.val);
        helper(root.right, res);
    }
}

非递归代码

import java.util.LinkedList;
import java.util.List;
import java.util.Stack;


class Solution {


    public List inorderTraversal(TreeNode root) {
        TreeNode ptr = root;

        Stack stack = new Stack();
        while (ptr != null) { // 入栈所有左子树
            stack.push(ptr);
            ptr = ptr.left;
        }


        List result = new LinkedList<>();
        while (stack.size() != 0) {
            TreeNode node = stack.pop();

            result.add(node.val);

            if (node.right != null){ // 以右节点为根,开始递归
                ptr = node.right;
                while (ptr != null) {
                    stack.push(ptr);
                    ptr = ptr.left;
                }
            }
        }
        return result;
    }   
}

先序遍历

即遍历顺序为先根序,根左右,如上图例子的顺序即为:2,7,2,6,5,11,5,9,4
递归算法思路也很直接,先输出自身,然后递归输出左子树,再递归输出右子树即可。

非递归算法思路和中序遍历差不多,参考递归的思路,应该先输出自身,然后再把左节点全部入栈,循环到底,然后挨个出栈对右节点当做一个根节点执行类似递归的操作。

递归代码

class Solution {
    public List preorderTraversal(TreeNode root) {
        List res = new ArrayList<>();
        helper(root, res);
        return res;
    }

    private void helper(TreeNode root, List res) {
        if (root == null) return;
        res.add(root.val);
        helper(root.left, res);
        helper(root.right, res);
    }
}

非递归代码

import java.util.LinkedList;
import java.util.List;
import java.util.Stack;


class Solution {


    public List preorderTraversal(TreeNode root) {
        TreeNode ptr = root;

        List result = new LinkedList<>();
        Stack stack = new Stack();
        while (ptr != null) {
            result.add(ptr.val);

            stack.push(ptr);

            ptr = ptr.left;
        }


        while (stack.size() != 0) {
            TreeNode node = stack.pop();

            if (node.right != null){
                ptr = node.right;
                while (ptr != null) {
                    result.add(ptr.val);

                    stack.push(ptr);
                    ptr = ptr.left;
                }
            }
        }
        return result;
    }

}

后序遍历

思路

后序遍历即后跟顺序:左右根,上图例中的二叉树后序遍历结果为:2,5,11,6,7,4,9,5,2
递归思路和上面两种顺序一样,先递归左子树,再递归右子树,再输出自身即可。

非递归稍稍复杂一点,和中序先序不同的地方在于,这个顺序的左和右之间没有指针相连。把最左路线上的节点全部入栈之后,出栈一个有右子树的左节点,不能直接输出它而是得等其右子树全部输出完成之后才能输出,所以我们需要再把这个节点扔进去,但是怎么区分是第一次扔进去的,还是第二次扔进去的呢?如果区分不了就会死循环,两种方式:

  1. 添加一块其余的空间,比如 map,或者在节点上加个 Flag,来记忆
  2. 再取出一个节点的右子树后,将其右子树清空,这样遇到空右子树的节点我们就直接输出就好了,不过这样的问题在于会破坏原始树的结构

递归代码

class Solution {
    public List preorderTraversal(TreeNode root) {
        List res = new ArrayList<>();
        helper(root, res);
        return res;
    }

    private void helper(TreeNode root, List res) {
        if (root == null) return;
        helper(root.left, res);
        helper(root.right, res);
        res.add(root.val);
    }
}

非递归代码

 public List postorderTraversal(TreeNode root) {
        TreeNode ptr = root;

        List result = new LinkedList<>();
        Stack stack = new Stack();
        while (ptr != null) {
            stack.push(ptr);
            ptr = ptr.left;
        }


        while (stack.size() != 0) {
            TreeNode node = stack.pop();
            if (node.right == null){
                result.add(node.val);
                continue;
            }

            ptr = node.right;
            node.right = null; // 把根节点再扔回栈里面,通过有无右子树区分是第一次还是第二次入栈
            stack.add(node);

            while (ptr != null) {
                stack.push(ptr);
                ptr = ptr.left;
            }
        }
        return result;
    }

层次遍历

思路

非递归的解法,思路很简单,通过队列先入先出的特性来实现,从根节点出发,输出,左节点入队,右节点入队,把下一层的节点取出来,输出,然后分别入队左右节点,直到最后队列空了,意味着到了底层,遍历完毕。

还有一种深度优先的递归解法,把层数传下去,先根或者中根序遍历时维护这一层的全局数组即可。

DFS 递归代码

class Solution {

    public List> result = new LinkedList<>();

    public List> levelOrder(TreeNode root) {
        helper(0, root);
        return result;
    }

    public void helper(int level, TreeNode root) {
        if (root == null) {
            return;
        }
        if (result.size() <= level) {
            result.add(new LinkedList<>());
        }

        result.get(level).add(root.val);
        helper(level + 1, root.left);
        helper(level + 1, root.right);
    }
}

BFS 非递归代码

class Solution {
    public List> levelOrder(TreeNode root) {
        List> result = new LinkedList<>();
        if (root ==null){
            return result;
        }

        List list = new LinkedList<>();
        list.add(root);

        while (!list.isEmpty()) {
            List level = new LinkedList<>();
            int size = list.size();

            for (int i = 0; i < size; i++) { // 取出一层所有的节点
                TreeNode node = list.remove(0);
                level.add(node.val); // 输出

                if (node.left != null) {
                    list.add(node.left); // 左节点入队,如果有的话
                }
                if (node.right != null) {
                    list.add(node.right); // 右节点入队,如果有的话
                }
            }
            result.add(level);
        }

        return result;

    }
}

之字形遍历

这是层次遍历的变种,想当于层次遍历的偶数层需要反序,所以我们只需要知道当前层的奇偶即可。
以层次遍历 BFS 的解法为基础,我们只需要加入如下一段即可:

if (result.size() % 2 == 1){ // 在加入结果前判断一下已有长度是不是奇数,是的话这一层就是偶数,反转一下即可。
                Collections.reverse(level);
}

完整代码:

class Solution {
    public List> zigzagLevelOrder(TreeNode root) {
        List> result = new LinkedList<>();
        if (root ==null){
            return result;
        }

        List list = new LinkedList<>();
        list.add(root);

        while (!list.isEmpty()) {
            List level = new LinkedList<>();
            int size = list.size();

            for (int i = 0; i < size; i++) {
                TreeNode node = list.remove(0);
                if (node.left != null) {
                    list.add(node.left);
                }
                if (node.right != null) {
                    list.add(node.right);
                }
                level.add(node.val);
            }

            if (result.size() % 2 == 1){
                Collections.reverse(level);
            }

            result.add(level);
        }

        return result;

    }
}

你可能感兴趣的:(【算法】Java 二叉树前序中序后序层次遍历)